Emma A. Higgins, Doreen S. Boyd, Tom W. Brown, Sarah C. Owen, Geertje M. F. van der Heijden, Adam C. Algar
{"title":"Unoccupied aerial vehicles as a tool to map lizard operative temperature in tropical environments","authors":"Emma A. Higgins, Doreen S. Boyd, Tom W. Brown, Sarah C. Owen, Geertje M. F. van der Heijden, Adam C. Algar","doi":"10.1002/rse2.393","DOIUrl":null,"url":null,"abstract":"To understand how ectotherms will respond to warming temperatures, we require information on thermal habitat quality at spatial resolutions and extents relevant to the organism. Measuring thermal habitat quality is either limited to small spatial extents, such as with ground‐based 3D operative temperature (<jats:italic>T</jats:italic><jats:sub><jats:italic>e</jats:italic></jats:sub>) replicas, representing the temperature of the animal at equilibrium with its environment, or is based on microclimate derived from physical models that use land cover variables and downscale coarse climate data. We draw on aspects of both these approaches and test the ability of unoccupied aerial vehicle (UAV) data (optical RGB) to predict fine‐scale heterogeneity in sub‐canopy lizard (<jats:italic>Anolis bicaorum</jats:italic>) <jats:italic>T</jats:italic><jats:sub><jats:italic>e</jats:italic></jats:sub> in tropical forest using random forest models. <jats:italic>Anolis bicaorum</jats:italic> is an endemic, critically endangered, species, facing significant threats of habitat loss and degradation, and work was conducted as part of a larger project. Our findings indicate that a model incorporating solely air temperature, measured at the centre of the 20 × 20 m plot, and ground‐based leaf area index (LAI) measurements, measured at directly above the 3D replica, predicted <jats:italic>T</jats:italic><jats:sub><jats:italic>e</jats:italic></jats:sub> well. However, a model with air temperature and UAV‐derived canopy metrics performed slightly better with the added advantage of enabling the mapping of <jats:italic>T</jats:italic><jats:sub><jats:italic>e</jats:italic></jats:sub> with continuous spatial extent at high spatial resolutions, across the whole of the UAV orthomosaic, allowing us to capture and map <jats:italic>T</jats:italic><jats:sub><jats:italic>e</jats:italic></jats:sub> across the whole of the survey plot, rather than purely at 3D replica locations. Our work provides a feasible workflow to map sub‐canopy lizard <jats:italic>T</jats:italic><jats:sub><jats:italic>e</jats:italic></jats:sub> in tropical environments at spatial scales relevant to the organism, and across continuous areas. This can be applied to other species and can represent species within the same community that have evolved a similar thermal niche. Such methods will be imperative in risk modelling of such species to anthropogenic land cover and climate change.","PeriodicalId":21132,"journal":{"name":"Remote Sensing in Ecology and Conservation","volume":"37 1","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2024-04-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Remote Sensing in Ecology and Conservation","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1002/rse2.393","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ECOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
To understand how ectotherms will respond to warming temperatures, we require information on thermal habitat quality at spatial resolutions and extents relevant to the organism. Measuring thermal habitat quality is either limited to small spatial extents, such as with ground‐based 3D operative temperature (Te) replicas, representing the temperature of the animal at equilibrium with its environment, or is based on microclimate derived from physical models that use land cover variables and downscale coarse climate data. We draw on aspects of both these approaches and test the ability of unoccupied aerial vehicle (UAV) data (optical RGB) to predict fine‐scale heterogeneity in sub‐canopy lizard (Anolis bicaorum) Te in tropical forest using random forest models. Anolis bicaorum is an endemic, critically endangered, species, facing significant threats of habitat loss and degradation, and work was conducted as part of a larger project. Our findings indicate that a model incorporating solely air temperature, measured at the centre of the 20 × 20 m plot, and ground‐based leaf area index (LAI) measurements, measured at directly above the 3D replica, predicted Te well. However, a model with air temperature and UAV‐derived canopy metrics performed slightly better with the added advantage of enabling the mapping of Te with continuous spatial extent at high spatial resolutions, across the whole of the UAV orthomosaic, allowing us to capture and map Te across the whole of the survey plot, rather than purely at 3D replica locations. Our work provides a feasible workflow to map sub‐canopy lizard Te in tropical environments at spatial scales relevant to the organism, and across continuous areas. This can be applied to other species and can represent species within the same community that have evolved a similar thermal niche. Such methods will be imperative in risk modelling of such species to anthropogenic land cover and climate change.
期刊介绍:
emote Sensing in Ecology and Conservation provides a forum for rapid, peer-reviewed publication of novel, multidisciplinary research at the interface between remote sensing science and ecology and conservation. The journal prioritizes findings that advance the scientific basis of ecology and conservation, promoting the development of remote-sensing based methods relevant to the management of land use and biological systems at all levels, from populations and species to ecosystems and biomes. The journal defines remote sensing in its broadest sense, including data acquisition by hand-held and fixed ground-based sensors, such as camera traps and acoustic recorders, and sensors on airplanes and satellites. The intended journal’s audience includes ecologists, conservation scientists, policy makers, managers of terrestrial and aquatic systems, remote sensing scientists, and students.
Remote Sensing in Ecology and Conservation is a fully open access journal from Wiley and the Zoological Society of London. Remote sensing has enormous potential as to provide information on the state of, and pressures on, biological diversity and ecosystem services, at multiple spatial and temporal scales. This new publication provides a forum for multidisciplinary research in remote sensing science, ecological research and conservation science.