Halogen-powered static conversion chemistry

IF 38.1 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY Nature reviews. Chemistry Pub Date : 2024-04-26 DOI:10.1038/s41570-024-00597-z
Xinliang Li, Wenyu Xu, Chunyi Zhi
{"title":"Halogen-powered static conversion chemistry","authors":"Xinliang Li, Wenyu Xu, Chunyi Zhi","doi":"10.1038/s41570-024-00597-z","DOIUrl":null,"url":null,"abstract":"Halogen-powered static conversion batteries (HSCBs) thrive in energy storage applications. They fall into the category of secondary non-flow batteries and operate by reversibly changing the chemical valence of halogens in the electrodes or/and electrolytes to transfer electrons, distinguishing them from the classic rocking-chair batteries. The active halide chemicals developed for these purposes include organic halides, halide salts, halogenated inorganics, organic–inorganic halides and the most widely studied elemental halogens. Aside from this, various redox mechanisms have been discovered based on multi-electron transfer and effective reaction pathways, contributing to improved electrochemical performances and stabilities of HSCBs. In this Review, we discuss the status of HSCBs and their electrochemical mechanism–performance correlations. We first provide a detailed exposition of the fundamental redox mechanisms, thermodynamics, conversion and catalysis chemistry, and mass or electron transfer modes involved in HSCBs. We conclude with a perspective on the challenges faced by the community and opportunities towards practical applications of high-energy halogen cathodes in energy-storage devices. Substantial progress in halide chemicals and redox mechanisms has spawned a boom in halogen-powered static conversion batteries. This Review tracks the natural benefits and intricate redox behaviour of halogen conversion chemistry, highlighting its pivotal role in electrochemical energy storage.","PeriodicalId":18849,"journal":{"name":"Nature reviews. Chemistry","volume":"8 5","pages":"359-375"},"PeriodicalIF":38.1000,"publicationDate":"2024-04-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature reviews. Chemistry","FirstCategoryId":"92","ListUrlMain":"https://www.nature.com/articles/s41570-024-00597-z","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Halogen-powered static conversion batteries (HSCBs) thrive in energy storage applications. They fall into the category of secondary non-flow batteries and operate by reversibly changing the chemical valence of halogens in the electrodes or/and electrolytes to transfer electrons, distinguishing them from the classic rocking-chair batteries. The active halide chemicals developed for these purposes include organic halides, halide salts, halogenated inorganics, organic–inorganic halides and the most widely studied elemental halogens. Aside from this, various redox mechanisms have been discovered based on multi-electron transfer and effective reaction pathways, contributing to improved electrochemical performances and stabilities of HSCBs. In this Review, we discuss the status of HSCBs and their electrochemical mechanism–performance correlations. We first provide a detailed exposition of the fundamental redox mechanisms, thermodynamics, conversion and catalysis chemistry, and mass or electron transfer modes involved in HSCBs. We conclude with a perspective on the challenges faced by the community and opportunities towards practical applications of high-energy halogen cathodes in energy-storage devices. Substantial progress in halide chemicals and redox mechanisms has spawned a boom in halogen-powered static conversion batteries. This Review tracks the natural benefits and intricate redox behaviour of halogen conversion chemistry, highlighting its pivotal role in electrochemical energy storage.

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
卤素动力静态转换化学
卤素动力静态转换电池(HSCB)在储能应用领域蓬勃发展。它们属于二次非流动电池,通过可逆地改变电极或/和电解质中卤素的化合价来转移电子,从而使其有别于传统的摇椅电池。为此开发的活性卤化物化学物质包括有机卤化物、卤化物盐、卤代无机物、有机-无机卤化物以及最广泛研究的卤素元素。除此之外,人们还发现了基于多电子转移和有效反应途径的各种氧化还原机制,从而提高了 HSCBs 的电化学性能和稳定性。在本综述中,我们将讨论 HSCB 的现状及其电化学机理-性能相关性。我们首先详细阐述了 HSCBs 所涉及的基本氧化还原机制、热力学、转化和催化化学以及质量或电子转移模式。最后,我们展望了高能卤素阴极在储能设备中的实际应用所面临的挑战和机遇。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Nature reviews. Chemistry
Nature reviews. Chemistry Chemical Engineering-General Chemical Engineering
CiteScore
52.80
自引率
0.80%
发文量
88
期刊介绍: Nature Reviews Chemistry is an online-only journal that publishes Reviews, Perspectives, and Comments on various disciplines within chemistry. The Reviews aim to offer balanced and objective analyses of selected topics, providing clear descriptions of relevant scientific literature. The content is designed to be accessible to recent graduates in any chemistry-related discipline while also offering insights for principal investigators and industry-based research scientists. Additionally, Reviews should provide the authors' perspectives on future directions and opinions regarding the major challenges faced by researchers in the field.
期刊最新文献
A career with an eye to the sky. Light-assisted functionalization of aryl radicals towards metal-free cross-coupling. Mixing metals with MXenes. Cracking the triple helix Presenting the tactile periodic table
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1