Integrating decision modeling and machine learning to inform treatment stratification

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS ACS Applied Bio Materials Pub Date : 2024-04-25 DOI:10.1002/hec.4834
David Glynn, John Giardina, Julia Hatamyar, Ankur Pandya, Marta Soares, Noemi Kreif
{"title":"Integrating decision modeling and machine learning to inform treatment stratification","authors":"David Glynn,&nbsp;John Giardina,&nbsp;Julia Hatamyar,&nbsp;Ankur Pandya,&nbsp;Marta Soares,&nbsp;Noemi Kreif","doi":"10.1002/hec.4834","DOIUrl":null,"url":null,"abstract":"<p>There is increasing interest in moving away from “one size fits all (OSFA)” approaches toward stratifying treatment decisions. Understanding how expected effectiveness and cost-effectiveness varies with patient covariates is a key aspect of stratified decision making. Recently proposed machine learning (ML) methods can learn heterogeneity in outcomes without pre-specifying subgroups or functional forms, enabling the construction of decision rules (‘policies’) that map individual covariates into a treatment decision. However, these methods do not yet integrate ML estimates into a decision modeling framework in order to reflect long-term policy-relevant outcomes and synthesize information from multiple sources. In this paper, we propose a method to integrate ML and decision modeling, when individual patient data is available to estimate treatment-specific survival time. We also propose a novel implementation of policy tree algorithms to define subgroups using decision model output. We demonstrate these methods using the SPRINT (Systolic Blood Pressure Intervention Trial), comparing outcomes for “standard” and “intensive” blood pressure targets. We find that including ML into a decision model can impact the estimate of incremental net health benefit (INHB) for OSFA policies. We also find evidence that stratifying treatment using subgroups defined by a tree-based algorithm can increase the estimates of the INHB.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-04-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/hec.4834","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"3","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/hec.4834","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

Abstract

There is increasing interest in moving away from “one size fits all (OSFA)” approaches toward stratifying treatment decisions. Understanding how expected effectiveness and cost-effectiveness varies with patient covariates is a key aspect of stratified decision making. Recently proposed machine learning (ML) methods can learn heterogeneity in outcomes without pre-specifying subgroups or functional forms, enabling the construction of decision rules (‘policies’) that map individual covariates into a treatment decision. However, these methods do not yet integrate ML estimates into a decision modeling framework in order to reflect long-term policy-relevant outcomes and synthesize information from multiple sources. In this paper, we propose a method to integrate ML and decision modeling, when individual patient data is available to estimate treatment-specific survival time. We also propose a novel implementation of policy tree algorithms to define subgroups using decision model output. We demonstrate these methods using the SPRINT (Systolic Blood Pressure Intervention Trial), comparing outcomes for “standard” and “intensive” blood pressure targets. We find that including ML into a decision model can impact the estimate of incremental net health benefit (INHB) for OSFA policies. We also find evidence that stratifying treatment using subgroups defined by a tree-based algorithm can increase the estimates of the INHB.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
整合决策建模和机器学习,为治疗分层提供信息。
人们越来越关注从 "一刀切(OSFA)"的方法转向分层治疗决策。了解预期疗效和成本效益如何随患者协变量的变化而变化是分层决策的一个关键方面。最近提出的机器学习(ML)方法可以在不预先指定亚组或函数形式的情况下学习结果的异质性,从而构建决策规则("政策"),将个体协变量映射到治疗决策中。然而,这些方法尚未将 ML 估计值整合到决策建模框架中,以反映与政策相关的长期结果并综合多种来源的信息。在本文中,我们提出了一种整合 ML 和决策建模的方法,即在有患者个人数据的情况下,估算特定治疗的生存时间。我们还提出了一种新颖的策略树算法实施方法,利用决策模型输出来定义子组。我们使用 SPRINT(收缩压干预试验)演示了这些方法,比较了 "标准 "和 "强化 "血压目标的治疗效果。我们发现,将 ML 纳入决策模型可影响 OSFA 政策的增量净健康效益 (INHB) 估计值。我们还发现有证据表明,使用基于树状算法定义的亚组对治疗进行分层可以提高 INHB 的估计值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
期刊最新文献
A Systematic Review of Sleep Disturbance in Idiopathic Intracranial Hypertension. Advancing Patient Education in Idiopathic Intracranial Hypertension: The Promise of Large Language Models. Anti-Myelin-Associated Glycoprotein Neuropathy: Recent Developments. Approach to Managing the Initial Presentation of Multiple Sclerosis: A Worldwide Practice Survey. Association Between LACE+ Index Risk Category and 90-Day Mortality After Stroke.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1