High-Density and Freestanding Porous Carbon Film for Compact Sodium-Ion Storage

IF 5.1 4区 材料科学 Q2 ELECTROCHEMISTRY Batteries & Supercaps Pub Date : 2024-04-25 DOI:10.1002/batt.202400117
Xiaomin Lin, Dr. Weicai Zhang, Jiaao Chen, Jiacong Lu, Prof. Mingtao Zheng, Prof. Yingliang Liu, Prof. Yeru Liang
{"title":"High-Density and Freestanding Porous Carbon Film for Compact Sodium-Ion Storage","authors":"Xiaomin Lin,&nbsp;Dr. Weicai Zhang,&nbsp;Jiaao Chen,&nbsp;Jiacong Lu,&nbsp;Prof. Mingtao Zheng,&nbsp;Prof. Yingliang Liu,&nbsp;Prof. Yeru Liang","doi":"10.1002/batt.202400117","DOIUrl":null,"url":null,"abstract":"<p>Porous carbon materials are often difficult to achieve high density while possessing high porosity, which limits their application in compact energy storage. Here, a design of freestanding porous-yet-dense carbon films with a tunable density (1.08–1.33 g cm<sup>−3</sup>) and porosity (specific surface area of 0–423.8 m<sup>2</sup> g<sup>−1</sup>) is presented through an assembly of porous carbon nanosheet with graphene oxide under vacuum filtration. The typical freestanding carbon films simultaneously deliver a high density of 1.08 g cm<sup>−3</sup> and a high specific surface area of 423.8 m<sup>2</sup> g<sup>−1</sup> when the porous carbon nanosheet content is 75 wt.%. As anode materials for sodium-ion batteries, the optimized freestanding carbon films deliver high volumetric capacity (270 mAh cm<sup>−3</sup> at 20 mA g<sup>−1</sup>), high initial capacity efficiency (81 %) and superior long-term cycling stability (1300 cycles with a capacity decay rate of 0.012 % per cycle). This study provides a promising direction for creating freestanding electrodes that meet both high-porosity and high-density requirements for compact sodium-ion batteries.</p>","PeriodicalId":132,"journal":{"name":"Batteries & Supercaps","volume":null,"pages":null},"PeriodicalIF":5.1000,"publicationDate":"2024-04-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Batteries & Supercaps","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/batt.202400117","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ELECTROCHEMISTRY","Score":null,"Total":0}
引用次数: 0

Abstract

Porous carbon materials are often difficult to achieve high density while possessing high porosity, which limits their application in compact energy storage. Here, a design of freestanding porous-yet-dense carbon films with a tunable density (1.08–1.33 g cm−3) and porosity (specific surface area of 0–423.8 m2 g−1) is presented through an assembly of porous carbon nanosheet with graphene oxide under vacuum filtration. The typical freestanding carbon films simultaneously deliver a high density of 1.08 g cm−3 and a high specific surface area of 423.8 m2 g−1 when the porous carbon nanosheet content is 75 wt.%. As anode materials for sodium-ion batteries, the optimized freestanding carbon films deliver high volumetric capacity (270 mAh cm−3 at 20 mA g−1), high initial capacity efficiency (81 %) and superior long-term cycling stability (1300 cycles with a capacity decay rate of 0.012 % per cycle). This study provides a promising direction for creating freestanding electrodes that meet both high-porosity and high-density requirements for compact sodium-ion batteries.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用于紧凑型钠离子存储的高密度独立多孔碳膜
摘要:多孔碳材料通常很难在具有高孔隙率的同时实现高密度,这限制了其在紧凑型储能中的应用。本文通过在真空过滤条件下将多孔碳纳米片与氧化石墨烯组装在一起,设计出了一种密度(1.08-1.33 g cm-3)和孔隙率(比表面积为 0-423.8 m2 g-1)均可调的独立多孔又致密的碳薄膜。当多孔碳纳米片的含量为 75 wt.% 时,典型的独立碳膜同时具有 1.08 g cm-3 的高密度和 423.8 m2 g-1 的高比表面积。作为钠离子电池的负极材料,优化后的独立碳膜具有高体积容量(20 mA g-1 时为 270 mAh cm-3)、高初始容量效率(81%)和卓越的长期循环稳定性(1300 个循环,每个循环的容量衰减率为 0.012%)。这项研究为创建同时满足紧凑型钠离子电池的高孔隙率和高密度要求的独立电极提供了一个很有前景的方向。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
8.60
自引率
5.30%
发文量
223
期刊介绍: Electrochemical energy storage devices play a transformative role in our societies. They have allowed the emergence of portable electronics devices, have triggered the resurgence of electric transportation and constitute key components in smart power grids. Batteries & Supercaps publishes international high-impact experimental and theoretical research on the fundamentals and applications of electrochemical energy storage. We support the scientific community to advance energy efficiency and sustainability.
期刊最新文献
Enhancing the Supercapacitive Behaviour of Cobalt Layered Hydroxides by 3D Structuring and Halide Substitution Flame-Retardant Polymer Electrolyte for Sodium-Ion Batteries On the Selection of the Current Collector for Water Processed Activated Carbon Electrodes for their Application in Electrochemical Capacitors Statistical Analysis of Solid Electrolyte Interface Formation: Correlation of Gas Composition, Electrochemical Data and Performance Effect of Synthesis Conditions on the Composition, Local Structure and Electrochemical Behavior of (Cr,Fe,Mn,Co,Ni)3O4 Anode Material
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1