首页 > 最新文献

Batteries & Supercaps最新文献

英文 中文
Cover Picture: Green Electrolytes for Aqueous Ion Batteries: Towards High-Energy and Low-Temperature Applications (Batteries & Supercaps 2/2025)
IF 5.1 4区 材料科学 Q2 ELECTROCHEMISTRY Pub Date : 2025-02-17 DOI: 10.1002/batt.202580201
Eunbin Park, Jiwon Jeong, Yung-Eun Sung, Seung-Ho Yu

The Front Cover illustrates the five key electrolytes discussed in this Review of green aqueous ion batteries by Y.-E. Sung, S.-H. Yu and co-workers (DOI: 10.1002/batt.202400579). At the center of the illustration is a cylindrical aqueous battery, symbolizing the paper's two major themes: high-energy and low-temperature operation. It is placed in the middle of a green forest, surrounded by hydrogel, eutectic, additive/cosolvent, water-in-salt, and molecular crowding electrolytes.

{"title":"Cover Picture: Green Electrolytes for Aqueous Ion Batteries: Towards High-Energy and Low-Temperature Applications (Batteries & Supercaps 2/2025)","authors":"Eunbin Park,&nbsp;Jiwon Jeong,&nbsp;Yung-Eun Sung,&nbsp;Seung-Ho Yu","doi":"10.1002/batt.202580201","DOIUrl":"https://doi.org/10.1002/batt.202580201","url":null,"abstract":"<p><b>The Front Cover</b> illustrates the five key electrolytes discussed in this Review of green aqueous ion batteries by Y.-E. Sung, S.-H. Yu and co-workers (DOI: 10.1002/batt.202400579). At the center of the illustration is a cylindrical aqueous battery, symbolizing the paper's two major themes: high-energy and low-temperature operation. It is placed in the middle of a green forest, surrounded by hydrogel, eutectic, additive/cosolvent, water-in-salt, and molecular crowding electrolytes.\u0000 <figure>\u0000 <div><picture>\u0000 <source></source></picture><p></p>\u0000 </div>\u0000 </figure>\u0000 </p>","PeriodicalId":132,"journal":{"name":"Batteries & Supercaps","volume":"8 2","pages":""},"PeriodicalIF":5.1,"publicationDate":"2025-02-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/batt.202580201","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143431522","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Cover Feature: Experimental and Computational Analysis of Slurry-Based Manufacturing of Solid-State Battery Composite Cathode (Batteries & Supercaps 2/2025)
IF 5.1 4区 材料科学 Q2 ELECTROCHEMISTRY Pub Date : 2025-02-17 DOI: 10.1002/batt.202580202
Mohammed Alabdali, Franco M. Zanotto, Benoît Notredame, Virginie Viallet, Vincent Seznec, Alejandro A. Franco

The Cover Feature showcases the manufacturing journey of solid-state battery composite electrodes, capturing the transition of the microstructure across key stages: slurry, drying, and calendering. It features a modeling workflow for battery cathodes composed of LiNi0.8Mn0.1Co0.1O2 and Li6PS5Cl, unveiling the impact of processing on microstructural evolution, with results validated against experimental data. More information can be found in the Research Article by A. A. Franco and co-workers (DOI: 10.1002/batt.202400709).

{"title":"Cover Feature: Experimental and Computational Analysis of Slurry-Based Manufacturing of Solid-State Battery Composite Cathode (Batteries & Supercaps 2/2025)","authors":"Mohammed Alabdali,&nbsp;Franco M. Zanotto,&nbsp;Benoît Notredame,&nbsp;Virginie Viallet,&nbsp;Vincent Seznec,&nbsp;Alejandro A. Franco","doi":"10.1002/batt.202580202","DOIUrl":"https://doi.org/10.1002/batt.202580202","url":null,"abstract":"<p><b>The Cover Feature</b> showcases the manufacturing journey of solid-state battery composite electrodes, capturing the transition of the microstructure across key stages: slurry, drying, and calendering. It features a modeling workflow for battery cathodes composed of LiNi<sub>0.8</sub>Mn<sub>0.1</sub>Co<sub>0.1</sub>O<sub>2</sub> and Li<sub>6</sub>PS<sub>5</sub>Cl, unveiling the impact of processing on microstructural evolution, with results validated against experimental data. More information can be found in the Research Article by A. A. Franco and co-workers (DOI: 10.1002/batt.202400709).\u0000 <figure>\u0000 <div><picture>\u0000 <source></source></picture><p></p>\u0000 </div>\u0000 </figure>\u0000 </p>","PeriodicalId":132,"journal":{"name":"Batteries & Supercaps","volume":"8 2","pages":""},"PeriodicalIF":5.1,"publicationDate":"2025-02-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/batt.202580202","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143431523","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Cover Feature: The ARTISTIC Battery Manufacturing Digitalization Initiative: From Fundamental Research to Industrialization (Batteries & Supercaps 1/2025)
IF 5.1 4区 材料科学 Q2 ELECTROCHEMISTRY Pub Date : 2025-01-15 DOI: 10.1002/batt.202580102
Javier F. Troncoso, Franco M. Zanotto, Diego E. Galvez-Aranda, Diana Zapata Dominguez, Lucie Denisart, Alejandro A. Franco

The Cover Feature represents the whole ARTISTIC project workflow to optimize battery manufacturing process parameters. Synthetic data (produced by the physics-based manufacturing modeling chain) and experimental data are used to train surrogate models by using different machine learning techniques at the different manufacturing stages: mixing & slurry, coating & drying, calendering, electrolyte filling and performance. Then, optimizers, such as Bayesian, are used to determine the best input parameters to optimize output battery properties. More information can be found in the Concept by A. A. Franco and co-workers (DOI: 10.1002/batt.202400385).

{"title":"Cover Feature: The ARTISTIC Battery Manufacturing Digitalization Initiative: From Fundamental Research to Industrialization (Batteries & Supercaps 1/2025)","authors":"Javier F. Troncoso,&nbsp;Franco M. Zanotto,&nbsp;Diego E. Galvez-Aranda,&nbsp;Diana Zapata Dominguez,&nbsp;Lucie Denisart,&nbsp;Alejandro A. Franco","doi":"10.1002/batt.202580102","DOIUrl":"https://doi.org/10.1002/batt.202580102","url":null,"abstract":"<p><b>The Cover Feature</b> represents the whole ARTISTIC project workflow to optimize battery manufacturing process parameters. Synthetic data (produced by the physics-based manufacturing modeling chain) and experimental data are used to train surrogate models by using different machine learning techniques at the different manufacturing stages: mixing &amp; slurry, coating &amp; drying, calendering, electrolyte filling and performance. Then, optimizers, such as Bayesian, are used to determine the best input parameters to optimize output battery properties. More information can be found in the Concept by A. A. Franco and co-workers (DOI: 10.1002/batt.202400385).\u0000 <figure>\u0000 <div><picture>\u0000 <source></source></picture><p></p>\u0000 </div>\u0000 </figure>\u0000 </p>","PeriodicalId":132,"journal":{"name":"Batteries & Supercaps","volume":"8 1","pages":""},"PeriodicalIF":5.1,"publicationDate":"2025-01-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/batt.202580102","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143115337","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Cover Feature: 3D Ternary Hybrid of VSe2/e-MXene/CNT with a Promising Energy Storage Performance for High Performance Asymmetric Supercapacitor (Batteries & Supercaps 1/2025)
IF 5.1 4区 材料科学 Q2 ELECTROCHEMISTRY Pub Date : 2025-01-15 DOI: 10.1002/batt.202580103
Pavithra Siddu, Sree Raj K A, Sithara Radhakrishnan, Sang Mun Jeong, Chandra Sekhar Rout

The Cover Feature represents the application of MXene-based ternary hybrids to supercapacitors due to their better physicochemical properties, including high conductivity, expansive surface area, and abundant redox-active sites. The 3D ternary hybrid structure was engineered by combining metallic VSe₂, Ti₃C₂Tx MXene, and carbon nanotubes to overcome the limitations typically encountered with 2D-material-based electrodes in supercapacitor applications. More information can be found in the Research Article by S. M. Jeong, C. S. Rout and co-workers (DOI: 10.1002/batt.202400466).

{"title":"Cover Feature: 3D Ternary Hybrid of VSe2/e-MXene/CNT with a Promising Energy Storage Performance for High Performance Asymmetric Supercapacitor (Batteries & Supercaps 1/2025)","authors":"Pavithra Siddu,&nbsp;Sree Raj K A,&nbsp;Sithara Radhakrishnan,&nbsp;Sang Mun Jeong,&nbsp;Chandra Sekhar Rout","doi":"10.1002/batt.202580103","DOIUrl":"https://doi.org/10.1002/batt.202580103","url":null,"abstract":"<p><b>The Cover Feature</b> represents the application of MXene-based ternary hybrids to supercapacitors due to their better physicochemical properties, including high conductivity, expansive surface area, and abundant redox-active sites. The 3D ternary hybrid structure was engineered by combining metallic VSe₂, Ti₃C₂Tx MXene, and carbon nanotubes to overcome the limitations typically encountered with 2D-material-based electrodes in supercapacitor applications. More information can be found in the Research Article by S. M. Jeong, C. S. Rout and co-workers (DOI: 10.1002/batt.202400466).\u0000 <figure>\u0000 <div><picture>\u0000 <source></source></picture><p></p>\u0000 </div>\u0000 </figure>\u0000 </p>","PeriodicalId":132,"journal":{"name":"Batteries & Supercaps","volume":"8 1","pages":""},"PeriodicalIF":5.1,"publicationDate":"2025-01-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/batt.202580103","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143115338","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Cover Picture: Effect of Chloride Ions on the Electrochemical Performance of Magnesium Metal-Organic-Frameworks-Based Semi-Solid Electrolytes (Batteries & Supercaps 1/2025)
IF 5.1 4区 材料科学 Q2 ELECTROCHEMISTRY Pub Date : 2025-01-15 DOI: 10.1002/batt.202580101
Mohamed M. Elnagar, Hagar K. Hassan, Ludwig A. Kibler, Timo Jacob

The Front Cover illustrates the impact of chloride ions on magnesium deposition/dissolution on copper electrodes by using a semi-solid electrolyte based on a metal–organic framework. Chloride ions enhance magnesium dissolution, dissolving the copper surface and forming active sites for magnesium deposition. Galvanostatic cycling induces pitting corrosion and nanoparticle formation. More information can be found in the Research Article by H. K. Hassan, T. Jacob and co-workers (DOI: 10.1002/batt.202400420).

{"title":"Cover Picture: Effect of Chloride Ions on the Electrochemical Performance of Magnesium Metal-Organic-Frameworks-Based Semi-Solid Electrolytes (Batteries & Supercaps 1/2025)","authors":"Mohamed M. Elnagar,&nbsp;Hagar K. Hassan,&nbsp;Ludwig A. Kibler,&nbsp;Timo Jacob","doi":"10.1002/batt.202580101","DOIUrl":"https://doi.org/10.1002/batt.202580101","url":null,"abstract":"<p><b>The Front Cover</b> illustrates the impact of chloride ions on magnesium deposition/dissolution on copper electrodes by using a semi-solid electrolyte based on a metal–organic framework. Chloride ions enhance magnesium dissolution, dissolving the copper surface and forming active sites for magnesium deposition. Galvanostatic cycling induces pitting corrosion and nanoparticle formation. More information can be found in the Research Article by H. K. Hassan, T. Jacob and co-workers (DOI: 10.1002/batt.202400420).\u0000 <figure>\u0000 <div><picture>\u0000 <source></source></picture><p></p>\u0000 </div>\u0000 </figure>\u0000 </p>","PeriodicalId":132,"journal":{"name":"Batteries & Supercaps","volume":"8 1","pages":""},"PeriodicalIF":5.1,"publicationDate":"2025-01-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/batt.202580101","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143115336","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Cover Feature: Li Decorated Graphdiyne Nanosheets: A Theoretical Study for an Electrode Material for Nonaqueous Lithium Batteries (Batteries & Supercaps 12/2024) 封面特写:Li修饰石墨烯纳米片:非水锂电池电极材料的理论研究(电池& Supercaps 12/2024)
IF 5.1 4区 材料科学 Q2 ELECTROCHEMISTRY Pub Date : 2024-12-09 DOI: 10.1002/batt.202481203
M. J. Jiménez, J. Juan, M.S. Sandoval, P. Bechthold, P. V. Jasen, E. A. González, A. Juan

The Cover Feature illustrates the optimized structures for lithium adsorbed on pristine and defective graphdiyne (GDY) nanosheets. The upper part (left) of the picture shows a perfect layer decorated with lithium (green), to the right is a plot of the charge density difference, showing a uniform distribution and a charge transfer from the lithium at one vertex. The lower part presents the structure after introducing a carbon vacancy showing a distortion, charge transfer from Li atoms and an asymmetric charge density difference that moves to the three connecting carbon atoms (blue). More information can be found in the Research Article by A. Juan and co-workers (DOI: 10.1002/batt.202400514).

覆盖特征说明了锂吸附在原始和缺陷石墨炔(GDY)纳米片上的优化结构。图片的上半部分(左)显示了一个完美的锂装饰层(绿色),右边是电荷密度差图,显示了一个均匀的分布和锂在一个顶点的电荷转移。下半部分是引入碳空位后的结构,显示了扭曲、锂原子的电荷转移以及向三个连接的碳原子(蓝色)移动的不对称电荷密度差。更多信息可以在A. Juan及其同事的研究文章中找到(DOI: 10.1002/bat .202400514)。
{"title":"Cover Feature: Li Decorated Graphdiyne Nanosheets: A Theoretical Study for an Electrode Material for Nonaqueous Lithium Batteries (Batteries & Supercaps 12/2024)","authors":"M. J. Jiménez,&nbsp;J. Juan,&nbsp;M.S. Sandoval,&nbsp;P. Bechthold,&nbsp;P. V. Jasen,&nbsp;E. A. González,&nbsp;A. Juan","doi":"10.1002/batt.202481203","DOIUrl":"https://doi.org/10.1002/batt.202481203","url":null,"abstract":"<p><b>The Cover Feature</b> illustrates the optimized structures for lithium adsorbed on pristine and defective graphdiyne (GDY) nanosheets. The upper part (left) of the picture shows a perfect layer decorated with lithium (green), to the right is a plot of the charge density difference, showing a uniform distribution and a charge transfer from the lithium at one vertex. The lower part presents the structure after introducing a carbon vacancy showing a distortion, charge transfer from Li atoms and an asymmetric charge density difference that moves to the three connecting carbon atoms (blue). More information can be found in the Research Article by A. Juan and co-workers (DOI: 10.1002/batt.202400514).\u0000 <figure>\u0000 <div><picture>\u0000 <source></source></picture><p></p>\u0000 </div>\u0000 </figure>\u0000 </p>","PeriodicalId":132,"journal":{"name":"Batteries & Supercaps","volume":"7 12","pages":""},"PeriodicalIF":5.1,"publicationDate":"2024-12-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/batt.202481203","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142860525","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Cover Picture: Automated Robotic Cell Fabrication Technology for Stacked-Type Lithium-Oxygen Batteries (Batteries & Supercaps 12/2024) 封面图片:堆叠式锂氧电池的自动机器人电池制造技术(电池与超级电容器 12/2024)
IF 5.1 4区 材料科学 Q2 ELECTROCHEMISTRY Pub Date : 2024-12-09 DOI: 10.1002/batt.202481201
Shoichi Matsuda, Shin Kimura, Misato Takahashi

The Front Cover shows a fully automated sequential robotic experimental setup for the cell fabrication of stacked-type lithium–oxygen rechargeable batteries with a fabrication throughput of over 80 cells per day, which is ten times higher than conventional human-based experiments. The high alignment accuracy during the electrode stacking and electrolyte injection process results in improved battery performance and reproducibility. More information can be found in the Research Article by S. Matsuda and co-workers (DOI: 10.1002/batt.202400509).

前盖展示了一个全自动顺序机器人实验装置,用于堆叠型锂氧可充电电池的电池制造,每天的制造吞吐量超过80个电池,比传统的人类实验高10倍。在电极堆叠和电解液注入过程中的高对准精度提高了电池的性能和再现性。更多信息可以在S. Matsuda及其同事的研究文章中找到(DOI: 10.1002/bat .202400509)。
{"title":"Cover Picture: Automated Robotic Cell Fabrication Technology for Stacked-Type Lithium-Oxygen Batteries (Batteries & Supercaps 12/2024)","authors":"Shoichi Matsuda,&nbsp;Shin Kimura,&nbsp;Misato Takahashi","doi":"10.1002/batt.202481201","DOIUrl":"https://doi.org/10.1002/batt.202481201","url":null,"abstract":"<p><b>The Front Cover</b> shows a fully automated sequential robotic experimental setup for the cell fabrication of stacked-type lithium–oxygen rechargeable batteries with a fabrication throughput of over 80 cells per day, which is ten times higher than conventional human-based experiments. The high alignment accuracy during the electrode stacking and electrolyte injection process results in improved battery performance and reproducibility. More information can be found in the Research Article by S. Matsuda and co-workers (DOI: 10.1002/batt.202400509).\u0000 <figure>\u0000 <div><picture>\u0000 <source></source></picture><p></p>\u0000 </div>\u0000 </figure>\u0000 </p>","PeriodicalId":132,"journal":{"name":"Batteries & Supercaps","volume":"7 12","pages":""},"PeriodicalIF":5.1,"publicationDate":"2024-12-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/batt.202481201","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142860429","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Cover Feature: Flexible Micro-Supercapacitors with Enhanced Energy Density Utilizing Flash Lamp Annealed Graphene-Carbon Nanotube Composite Electrodes (Batteries & Supercaps 12/2024) 封面专题:利用闪光灯退火石墨烯-碳纳米管复合电极提高能量密度的柔性微型超级电容器(电池与超级电容器 12/2024)
IF 5.1 4区 材料科学 Q2 ELECTROCHEMISTRY Pub Date : 2024-12-09 DOI: 10.1002/batt.202481202
Yusik Myung, TaeYoung Kim

The Cover Feature illustrates the advanced fabrication process and structure of flexible micro-supercapacitors (MSCs) with 3D interconnected graphene/carbon nanotube (CNT) composite electrodes. Combining flash lamp annealing (FLA) and laser ablation, this process transforms graphene oxide and CNT films into high-performance, interdigitated MSCs. The resulting devices deliver exceptional energy density, flexibility, and scalability, thus underscoring their potential for flexible electronics and miniaturized energy-storage applications. More information can be found in the Research Article by Y. Myung and T. Y. Kim (DOI: 10.1002/batt.202400557).

封面特征展示了具有三维互联石墨烯/碳纳米管(CNT)复合电极的柔性微型超级电容器(MSCs)的先进制造工艺和结构。结合闪光灯退火(FLA)和激光烧蚀,该工艺将氧化石墨烯和碳纳米管薄膜转化为高性能的互指间充质干细胞。由此产生的器件提供了卓越的能量密度、灵活性和可扩展性,从而强调了它们在柔性电子和小型化储能应用方面的潜力。更多信息可以在Y. Myung和T. Y.的研究文章中找到。Kim (DOI: 10.1002/bat .202400557)。
{"title":"Cover Feature: Flexible Micro-Supercapacitors with Enhanced Energy Density Utilizing Flash Lamp Annealed Graphene-Carbon Nanotube Composite Electrodes (Batteries & Supercaps 12/2024)","authors":"Yusik Myung,&nbsp;TaeYoung Kim","doi":"10.1002/batt.202481202","DOIUrl":"https://doi.org/10.1002/batt.202481202","url":null,"abstract":"<p><b>The Cover Feature</b> illustrates the advanced fabrication process and structure of flexible micro-supercapacitors (MSCs) with 3D interconnected graphene/carbon nanotube (CNT) composite electrodes. Combining flash lamp annealing (FLA) and laser ablation, this process transforms graphene oxide and CNT films into high-performance, interdigitated MSCs. The resulting devices deliver exceptional energy density, flexibility, and scalability, thus underscoring their potential for flexible electronics and miniaturized energy-storage applications. More information can be found in the Research Article by Y. Myung and T. Y. Kim (DOI: 10.1002/batt.202400557).\u0000 <figure>\u0000 <div><picture>\u0000 <source></source></picture><p></p>\u0000 </div>\u0000 </figure>\u0000 </p>","PeriodicalId":132,"journal":{"name":"Batteries & Supercaps","volume":"7 12","pages":""},"PeriodicalIF":5.1,"publicationDate":"2024-12-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/batt.202481202","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142868324","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Nanostructured Ionic Liquid Containing Block Copolymer Electrolytes for Solid-State Supercapacitors
IF 5.1 4区 材料科学 Q2 ELECTROCHEMISTRY Pub Date : 2024-12-04 DOI: 10.1002/batt.202400591
Anto Puthussery Varghese, Daniela de Morais Zanata, Sima Lashkari, Miryam Criado-González, Maria Forsyth, Patrick C. Howlett, Andrew N. Rider, Nicolas Goujon, Irune Villaluenga

We report on the physiochemical behaviour of membranes based on three different polystyrene-b-poly(ethylene oxide)-b-polystyrene (PS-b-PEO-b-PS) block copolymers and an ionic liquid (1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide (EMIMTFSI)) and their use as solid-state electrolytes in supercapacitors. The nanostructured block copolymers form free standing membranes at high ionic liquid uptake with conductivities above 1 mS/cm at 25 °C, keeping ordered morphologies. We used small angle X-ray scattering (SAXS) to propose the correlation between domain spacing, the copolymer chain length (N) and the interaction parameter (χeff) in the block copolymers. We explored the potential of the electrolytes in two high voltage (3.0 V) device configurations, first using carbon nanotube (CNT) electrodes, with excellent electrical conductivity and high-rate capability exhibiting a power density of 5.7 KW/kg at 4 A/g, while devices based on high surface area activated carbon exhibited high energy density of 20.7 Wh/kg at 4 A/g. Overall, both devices deliver superior specific energy and power densities than that of commercial state-of-the-art supercapacitors, based on liquid electrolyte. Additionally, the CNT|Solid-state|CNT device displays higher power density compared to the AC|Solid-state|AC device, highlighting its better suitability for high power applications, while the AC|Solid-state|AC device, is better suited for energy density applications.

{"title":"Nanostructured Ionic Liquid Containing Block Copolymer Electrolytes for Solid-State Supercapacitors","authors":"Anto Puthussery Varghese,&nbsp;Daniela de Morais Zanata,&nbsp;Sima Lashkari,&nbsp;Miryam Criado-González,&nbsp;Maria Forsyth,&nbsp;Patrick C. Howlett,&nbsp;Andrew N. Rider,&nbsp;Nicolas Goujon,&nbsp;Irune Villaluenga","doi":"10.1002/batt.202400591","DOIUrl":"https://doi.org/10.1002/batt.202400591","url":null,"abstract":"<p>We report on the physiochemical behaviour of membranes based on three different polystyrene-<i>b</i>-poly(ethylene oxide)-<i>b</i>-polystyrene (PS-<i>b</i>-PEO-<i>b</i>-PS) block copolymers and an ionic liquid (1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide (EMIMTFSI)) and their use as solid-state electrolytes in supercapacitors. The nanostructured block copolymers form free standing membranes at high ionic liquid uptake with conductivities above 1 mS/cm at 25 °C, keeping ordered morphologies. We used small angle X-ray scattering (SAXS) to propose the correlation between domain spacing, the copolymer chain length (<i>N</i>) and the interaction parameter (χ<sub>eff)</sub> in the block copolymers. We explored the potential of the electrolytes in two high voltage (3.0 V) device configurations, first using carbon nanotube (CNT) electrodes, with excellent electrical conductivity and high-rate capability exhibiting a power density of 5.7 KW/kg at 4 A/g, while devices based on high surface area activated carbon exhibited high energy density of 20.7 Wh/kg at 4 A/g. Overall, both devices deliver superior specific energy and power densities than that of commercial state-of-the-art supercapacitors, based on liquid electrolyte. Additionally, the CNT|Solid-state|CNT device displays higher power density compared to the AC|Solid-state|AC device, highlighting its better suitability for high power applications, while the AC|Solid-state|AC device, is better suited for energy density applications.</p>","PeriodicalId":132,"journal":{"name":"Batteries & Supercaps","volume":"8 1","pages":""},"PeriodicalIF":5.1,"publicationDate":"2024-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/batt.202400591","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143111781","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Comparison of dU/dQ, Voltage Decay, and Float Currents via Temperature Ramps and Steps in Li-Ion Batteries
IF 5.1 4区 材料科学 Q2 ELECTROCHEMISTRY Pub Date : 2024-11-22 DOI: 10.1002/batt.202400627
Mohamed Azzam, Moritz Ehrensberger, Christian Endisch, Dirk-Uwe Sauer, Meinert Lewerenz

In this study, the effect of temperature changes on the voltage decay and current behavior of lithium-ion cells is investigated, focusing on a comparison between open-circuit voltage (OCV) measurements and float current measurements. Using our self-developed advanced Floater system, the voltage decay rates from OCV and float current measurements for three different cell types are assessed. Temperature ramps and steps, ranging from 5 °C to 50 °C, are applied to capture the impact of entropic effects and aging mechanisms. Both methods effectively capture aging dynamics, showing strong agreement between ramp and step measurements. Deviations arise only in cases of strong entropy effects due to differences in measurement strategies. The findings confirm that float currents do not introduce additional aging beyond that captured by OCV measurements. The relationship between OCV and float current is governed by differential capacity , which varies with cell voltage and temperature. Furthermore, strong deviations from classical differential voltage analysis but high agreement with local pulse measurements are observed, especially at low depths of discharge. This can be explained by the hysteresis effect of graphite. These findings highlight the benefits of high-precision float current measurements in aging studies, particularly in contrast to simpler OCV methods.

{"title":"Comparison of dU/dQ, Voltage Decay, and Float Currents via Temperature Ramps and Steps in Li-Ion Batteries","authors":"Mohamed Azzam,&nbsp;Moritz Ehrensberger,&nbsp;Christian Endisch,&nbsp;Dirk-Uwe Sauer,&nbsp;Meinert Lewerenz","doi":"10.1002/batt.202400627","DOIUrl":"https://doi.org/10.1002/batt.202400627","url":null,"abstract":"<p>In this study, the effect of temperature changes on the voltage decay and current behavior of lithium-ion cells is investigated, focusing on a comparison between open-circuit voltage (OCV) measurements and float current <span></span><math></math>\u0000 measurements. Using our self-developed advanced Floater system, the voltage decay rates <span></span><math></math>\u0000 from OCV and float current measurements for three different cell types are assessed. Temperature ramps and steps, ranging from 5 °C to 50 °C, are applied to capture the impact of entropic effects and aging mechanisms. Both methods effectively capture aging dynamics, showing strong agreement between ramp and step measurements. Deviations arise only in cases of strong entropy effects due to differences in measurement strategies. The findings confirm that float currents do not introduce additional aging beyond that captured by OCV measurements. The relationship between OCV and float current is governed by differential capacity <span></span><math></math>\u0000, which varies with cell voltage and temperature. Furthermore, strong deviations from classical differential voltage analysis but high agreement with local pulse measurements are observed, especially at low depths of discharge. This can be explained by the hysteresis effect of graphite. These findings highlight the benefits of high-precision float current measurements in aging studies, particularly in contrast to simpler OCV methods.</p>","PeriodicalId":132,"journal":{"name":"Batteries & Supercaps","volume":"8 1","pages":""},"PeriodicalIF":5.1,"publicationDate":"2024-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/batt.202400627","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143118181","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Batteries & Supercaps
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1