Diverse Combinatorial Biosynthesis Strategies for C–H Functionalization of Anthracyclinones

IF 3.7 2区 生物学 Q1 BIOCHEMICAL RESEARCH METHODS ACS Synthetic Biology Pub Date : 2024-04-25 DOI:10.1021/acssynbio.4c00043
Rongbin Wang, Benjamin Nji Wandi, Nora Schwartz, Jacob Hecht, Larissa Ponomareva, Kendall Paige, Alexis West, Kathryn Desanti, Jennifer Nguyen, Jarmo Niemi, Jon S. Thorson, Khaled A. Shaaban*, Mikko Metsä-Ketelä* and S. Eric Nybo*, 
{"title":"Diverse Combinatorial Biosynthesis Strategies for C–H Functionalization of Anthracyclinones","authors":"Rongbin Wang,&nbsp;Benjamin Nji Wandi,&nbsp;Nora Schwartz,&nbsp;Jacob Hecht,&nbsp;Larissa Ponomareva,&nbsp;Kendall Paige,&nbsp;Alexis West,&nbsp;Kathryn Desanti,&nbsp;Jennifer Nguyen,&nbsp;Jarmo Niemi,&nbsp;Jon S. Thorson,&nbsp;Khaled A. Shaaban*,&nbsp;Mikko Metsä-Ketelä* and S. Eric Nybo*,&nbsp;","doi":"10.1021/acssynbio.4c00043","DOIUrl":null,"url":null,"abstract":"<p ><i>Streptomyces</i> spp. are “nature’s antibiotic factories” that produce valuable bioactive metabolites, such as the cytotoxic anthracycline polyketides. While the anthracyclines have hundreds of natural and chemically synthesized analogues, much of the chemical diversity stems from enzymatic modifications to the saccharide chains and, to a lesser extent, from alterations to the core scaffold. Previous work has resulted in the generation of a BioBricks synthetic biology toolbox in <i>Streptomyces coelicolor</i> M1152Δ<i>matAB</i> that could produce aklavinone, 9-<i>epi</i>-aklavinone, auramycinone, and nogalamycinone. In this work, we extended the platform to generate oxidatively modified analogues <i>via</i> two crucial strategies. (i) We swapped the ketoreductase and first-ring cyclase enzymes for the aromatase cyclase from the mithramycin biosynthetic pathway in our polyketide synthase (PKS) cassettes to generate 2-hydroxylated analogues. (ii) Next, we engineered several multioxygenase cassettes to catalyze 11-hydroxylation, 1-hydroxylation, 10-hydroxylation, 10-decarboxylation, and 4-hydroxyl regioisomerization. We also developed improved plasmid vectors and <i>S. coelicolor</i> M1152Δ<i>matAB</i> expression hosts to produce anthracyclinones. This work sets the stage for the combinatorial biosynthesis of bespoke anthracyclines using recombinant <i>Streptomyces spp.</i> hosts.</p>","PeriodicalId":26,"journal":{"name":"ACS Synthetic Biology","volume":null,"pages":null},"PeriodicalIF":3.7000,"publicationDate":"2024-04-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/acssynbio.4c00043","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Synthetic Biology","FirstCategoryId":"99","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acssynbio.4c00043","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

Abstract

Streptomyces spp. are “nature’s antibiotic factories” that produce valuable bioactive metabolites, such as the cytotoxic anthracycline polyketides. While the anthracyclines have hundreds of natural and chemically synthesized analogues, much of the chemical diversity stems from enzymatic modifications to the saccharide chains and, to a lesser extent, from alterations to the core scaffold. Previous work has resulted in the generation of a BioBricks synthetic biology toolbox in Streptomyces coelicolor M1152ΔmatAB that could produce aklavinone, 9-epi-aklavinone, auramycinone, and nogalamycinone. In this work, we extended the platform to generate oxidatively modified analogues via two crucial strategies. (i) We swapped the ketoreductase and first-ring cyclase enzymes for the aromatase cyclase from the mithramycin biosynthetic pathway in our polyketide synthase (PKS) cassettes to generate 2-hydroxylated analogues. (ii) Next, we engineered several multioxygenase cassettes to catalyze 11-hydroxylation, 1-hydroxylation, 10-hydroxylation, 10-decarboxylation, and 4-hydroxyl regioisomerization. We also developed improved plasmid vectors and S. coelicolor M1152ΔmatAB expression hosts to produce anthracyclinones. This work sets the stage for the combinatorial biosynthesis of bespoke anthracyclines using recombinant Streptomyces spp. hosts.

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
蒽环类化合物 C-H 功能化的多种组合生物合成策略。
链霉菌属是 "大自然的抗生素工厂",可产生宝贵的生物活性代谢物,如细胞毒性蒽环类多酮化合物。虽然蒽环类化合物有数百种天然和化学合成的类似物,但其化学多样性主要源于酶对糖链的修饰,其次是对核心支架的改变。此前的工作已在链霉菌 M1152ΔmatAB 中生成了一个 BioBricks 合成生物学工具箱,该工具箱可生产黄酮、9-表黄酮、金霉素酮和诺加霉素酮。在这项工作中,我们扩展了这一平台,通过两种关键策略生成氧化修饰的类似物。(i) 我们将多酮合成酶(PKS)盒中的酮还原酶和一环酶换成了米曲霉素生物合成途径中的芳香化酶环化酶,从而生成了 2-羟基化的类似物。(ii) 接下来,我们设计了几个多氧化酶盒,以催化 11-羟基化、1-羟基化、10-羟基化、10-脱羧和 4-羟基再异构化。我们还开发了改良质粒载体和 S. coelicolor M1152ΔmatAB 表达宿主,用于生产蒽环类化合物。这项工作为利用重组链霉菌属宿主进行定制蒽环类化合物的组合生物合成奠定了基础。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
8.00
自引率
10.60%
发文量
380
审稿时长
6-12 weeks
期刊介绍: The journal is particularly interested in studies on the design and synthesis of new genetic circuits and gene products; computational methods in the design of systems; and integrative applied approaches to understanding disease and metabolism. Topics may include, but are not limited to: Design and optimization of genetic systems Genetic circuit design and their principles for their organization into programs Computational methods to aid the design of genetic systems Experimental methods to quantify genetic parts, circuits, and metabolic fluxes Genetic parts libraries: their creation, analysis, and ontological representation Protein engineering including computational design Metabolic engineering and cellular manufacturing, including biomass conversion Natural product access, engineering, and production Creative and innovative applications of cellular programming Medical applications, tissue engineering, and the programming of therapeutic cells Minimal cell design and construction Genomics and genome replacement strategies Viral engineering Automated and robotic assembly platforms for synthetic biology DNA synthesis methodologies Metagenomics and synthetic metagenomic analysis Bioinformatics applied to gene discovery, chemoinformatics, and pathway construction Gene optimization Methods for genome-scale measurements of transcription and metabolomics Systems biology and methods to integrate multiple data sources in vitro and cell-free synthetic biology and molecular programming Nucleic acid engineering.
期刊最新文献
Bioinformatic Prediction and High Throughput In Vivo Screening to Identify Cis-Regulatory Elements for the Development of Algal Synthetic Promoters. Cell-Free Translation Quantification via a Fluorescent Minihelix. Directed Evolution of Acoustic Reporter Genes Using High-Throughput Acoustic Screening. Metabolic Profile of the Genome-Reduced Bacillus subtilis Strain IIG-Bs-27-39: An Attractive Chassis for Recombinant Protein Production. AutoBioTech─A Versatile Biofoundry for Automated Strain Engineering.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1