Gianno Pannafino, Jun Jie Chen, Viraj Mithani, Lisette Payero, Michael Gioia, J. B. Crickard, Eric Alani
{"title":"The Dmc1 recombinase physically interacts with and promotes the meiotic crossover functions of the Mlh1-Mlh3 endonuclease.","authors":"Gianno Pannafino, Jun Jie Chen, Viraj Mithani, Lisette Payero, Michael Gioia, J. B. Crickard, Eric Alani","doi":"10.1093/genetics/iyae066","DOIUrl":null,"url":null,"abstract":"The accurate segregation of homologous chromosomes during the Meiosis I reductional division in most sexually reproducing eukaryotes requires crossing over between homologs. In baker's yeast approximately 80 percent of meiotic crossovers result from Mlh1-Mlh3 and Exo1 acting to resolve double-Holliday junction (dHJ) intermediates in a biased manner. Little is known about how Mlh1-Mlh3 is recruited to recombination intermediates to perform its role in crossover resolution. We performed a gene dosage screen in baker's yeast to identify novel genetic interactors with Mlh1-Mlh3. Specifically, we looked for genes whose lowered dosage reduced meiotic crossing over using sensitized mlh3 alleles that disrupt the stability of the Mlh1-Mlh3 complex and confer defects in mismatch repair but do not disrupt meiotic crossing over. To our surprise we identified genetic interactions between MLH3 and DMC1, the recombinase responsible for recombination between homologous chromosomes during meiosis. We then showed that Mlh3 physically interacts with Dmc1 in vitro and in vivo. Partial complementation of Mlh3 crossover functions was observed when MLH3 was expressed under the control of the CLB1 promoter (NDT80 regulon), suggesting that Mlh3 function can be provided late in meiotic prophase at some functional cost. A model for how Dmc1 could facilitate Mlh1-Mlh3's role in crossover resolution is presented.","PeriodicalId":12706,"journal":{"name":"Genetics","volume":"11 12","pages":""},"PeriodicalIF":3.3000,"publicationDate":"2024-04-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Genetics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/genetics/iyae066","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
The accurate segregation of homologous chromosomes during the Meiosis I reductional division in most sexually reproducing eukaryotes requires crossing over between homologs. In baker's yeast approximately 80 percent of meiotic crossovers result from Mlh1-Mlh3 and Exo1 acting to resolve double-Holliday junction (dHJ) intermediates in a biased manner. Little is known about how Mlh1-Mlh3 is recruited to recombination intermediates to perform its role in crossover resolution. We performed a gene dosage screen in baker's yeast to identify novel genetic interactors with Mlh1-Mlh3. Specifically, we looked for genes whose lowered dosage reduced meiotic crossing over using sensitized mlh3 alleles that disrupt the stability of the Mlh1-Mlh3 complex and confer defects in mismatch repair but do not disrupt meiotic crossing over. To our surprise we identified genetic interactions between MLH3 and DMC1, the recombinase responsible for recombination between homologous chromosomes during meiosis. We then showed that Mlh3 physically interacts with Dmc1 in vitro and in vivo. Partial complementation of Mlh3 crossover functions was observed when MLH3 was expressed under the control of the CLB1 promoter (NDT80 regulon), suggesting that Mlh3 function can be provided late in meiotic prophase at some functional cost. A model for how Dmc1 could facilitate Mlh1-Mlh3's role in crossover resolution is presented.
期刊介绍:
GENETICS is published by the Genetics Society of America, a scholarly society that seeks to deepen our understanding of the living world by advancing our understanding of genetics. Since 1916, GENETICS has published high-quality, original research presenting novel findings bearing on genetics and genomics. The journal publishes empirical studies of organisms ranging from microbes to humans, as well as theoretical work.
While it has an illustrious history, GENETICS has changed along with the communities it serves: it is not your mentor''s journal.
The editors make decisions quickly – in around 30 days – without sacrificing the excellence and scholarship for which the journal has long been known. GENETICS is a peer reviewed, peer-edited journal, with an international reach and increasing visibility and impact. All editorial decisions are made through collaboration of at least two editors who are practicing scientists.
GENETICS is constantly innovating: expanded types of content include Reviews, Commentary (current issues of interest to geneticists), Perspectives (historical), Primers (to introduce primary literature into the classroom), Toolbox Reviews, plus YeastBook, FlyBook, and WormBook (coming spring 2016). For particularly time-sensitive results, we publish Communications. As part of our mission to serve our communities, we''ve published thematic collections, including Genomic Selection, Multiparental Populations, Mouse Collaborative Cross, and the Genetics of Sex.