Zaixian Zhang PhD, Junqi Han MS, Weina Ji MS, Henan Lou MS, Zhiming Li PhD, Yabin Hu PhD, Mingjia Wang PhD, Baozhu Qi MS, Shunli Liu PhD
{"title":"Improved deep learning for automatic localisation and segmentation of rectal cancer on T2-weighted MRI","authors":"Zaixian Zhang PhD, Junqi Han MS, Weina Ji MS, Henan Lou MS, Zhiming Li PhD, Yabin Hu PhD, Mingjia Wang PhD, Baozhu Qi MS, Shunli Liu PhD","doi":"10.1002/jmrs.794","DOIUrl":null,"url":null,"abstract":"<div>\n \n \n <section>\n \n <h3> Introduction</h3>\n \n <p>The automatic segmentation approaches of rectal cancer from magnetic resonance imaging (MRI) are very valuable to relieve physicians from heavy workloads and enhance working efficiency. This study aimed to compare the segmentation accuracy of a proposed model with the other three models and the inter-observer consistency.</p>\n </section>\n \n <section>\n \n <h3> Methods</h3>\n \n <p>A total of 65 patients with rectal cancer who underwent MRI examination were enrolled in our cohort and were randomly divided into a training cohort (<i>n</i> = 45) and a validation cohort (<i>n</i> = 20). Two experienced radiologists independently segmented rectal cancer lesions. A novel segmentation model (AttSEResUNet) was trained on T2WI based on ResUNet and attention mechanisms. The segmentation performance of the AttSEResUNet, U-Net, ResUNet and U-Net with Attention Gate (AttUNet) was compared, using Dice similarity coefficient (DSC), Hausdorff distance (HD), mean distance to agreement (MDA) and Jaccard index. The segmentation variability of automatic segmentation models and inter-observer was also evaluated.</p>\n </section>\n \n <section>\n \n <h3> Results</h3>\n \n <p>The AttSEResUNet with post-processing showed perfect lesion recognition rate (100%) and false recognition rate (0), and its evaluation metrics outperformed other three models for two independent readers (observer 1: DSC = 0.839 ± 0.112, HD = 9.55 ± 6.68, MDA = 0.556 ± 0.722, Jaccard index = 0.736 ± 0.150; observer 2: DSC = 0.856 ± 0.099, HD = 11.0 ± 10.1, MDA = 0.789 ± 1.07, Jaccard index = 0.673 ± 0.130). The segmentation performance of AttSEResUNet was comparable and similar to manual variability (DSC = 0.857 ± 0.115, HD = 10.0 ± 10.0, MDA = 0.704 ± 1.17, Jaccard index = 0.666 ± 0.139).</p>\n </section>\n \n <section>\n \n <h3> Conclusion</h3>\n \n <p>Comparing with other three models, the proposed AttSEResUNet model was demonstrated as a more accurate model for contouring the rectal tumours in axial T2WI images, whose variability was similar to that of inter-observer.</p>\n </section>\n </div>","PeriodicalId":16382,"journal":{"name":"Journal of Medical Radiation Sciences","volume":"71 4","pages":"509-518"},"PeriodicalIF":1.8000,"publicationDate":"2024-04-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/jmrs.794","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Medical Radiation Sciences","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jmrs.794","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
引用次数: 0
Abstract
Introduction
The automatic segmentation approaches of rectal cancer from magnetic resonance imaging (MRI) are very valuable to relieve physicians from heavy workloads and enhance working efficiency. This study aimed to compare the segmentation accuracy of a proposed model with the other three models and the inter-observer consistency.
Methods
A total of 65 patients with rectal cancer who underwent MRI examination were enrolled in our cohort and were randomly divided into a training cohort (n = 45) and a validation cohort (n = 20). Two experienced radiologists independently segmented rectal cancer lesions. A novel segmentation model (AttSEResUNet) was trained on T2WI based on ResUNet and attention mechanisms. The segmentation performance of the AttSEResUNet, U-Net, ResUNet and U-Net with Attention Gate (AttUNet) was compared, using Dice similarity coefficient (DSC), Hausdorff distance (HD), mean distance to agreement (MDA) and Jaccard index. The segmentation variability of automatic segmentation models and inter-observer was also evaluated.
Results
The AttSEResUNet with post-processing showed perfect lesion recognition rate (100%) and false recognition rate (0), and its evaluation metrics outperformed other three models for two independent readers (observer 1: DSC = 0.839 ± 0.112, HD = 9.55 ± 6.68, MDA = 0.556 ± 0.722, Jaccard index = 0.736 ± 0.150; observer 2: DSC = 0.856 ± 0.099, HD = 11.0 ± 10.1, MDA = 0.789 ± 1.07, Jaccard index = 0.673 ± 0.130). The segmentation performance of AttSEResUNet was comparable and similar to manual variability (DSC = 0.857 ± 0.115, HD = 10.0 ± 10.0, MDA = 0.704 ± 1.17, Jaccard index = 0.666 ± 0.139).
Conclusion
Comparing with other three models, the proposed AttSEResUNet model was demonstrated as a more accurate model for contouring the rectal tumours in axial T2WI images, whose variability was similar to that of inter-observer.
期刊介绍:
Journal of Medical Radiation Sciences (JMRS) is an international and multidisciplinary peer-reviewed journal that accepts manuscripts related to medical imaging / diagnostic radiography, radiation therapy, nuclear medicine, medical ultrasound / sonography, and the complementary disciplines of medical physics, radiology, radiation oncology, nursing, psychology and sociology. Manuscripts may take the form of: original articles, review articles, commentary articles, technical evaluations, case series and case studies. JMRS promotes excellence in international medical radiation science by the publication of contemporary and advanced research that encourages the adoption of the best clinical, scientific and educational practices in international communities. JMRS is the official professional journal of the Australian Society of Medical Imaging and Radiation Therapy (ASMIRT) and the New Zealand Institute of Medical Radiation Technology (NZIMRT).