Busra Nur Esen, Sibel Uzuner, Humeyra Taskent Sezgin
{"title":"Valorization of black carrot pomace and pea powder for co-production of polygalacturonase and pectin lyase","authors":"Busra Nur Esen, Sibel Uzuner, Humeyra Taskent Sezgin","doi":"10.1007/s13399-024-05646-7","DOIUrl":null,"url":null,"abstract":"<div><p>Pectic enzyme groups, particularly polygalacturonase and pectin lyase, are vital components of a high-value microbial enzyme category widely employed in applications within the fruit juice and wine industries. The exploration of alternative carbon and nitrogen sources remains crucial for enhancing enzyme production while reducing costs. This study evaluates the impact of carbon (black carrot pomace) and nitrogen (pea protein) loading on fermentable sugar content, protein content, and enzyme activities during both batch and fed-batch cultivation. Additionally, three distinct valorization techniques—thermal (steam), thermochemical (steam assisted with dilute acid), and microwave-assisted with dilute acid pretreatments—were assessed for their effectiveness in hydrolyzing black carrot pomace as a carbon source. The findings indicate that microwave-assisted dilute acid, coupled with enzymatic saccharification, resulted in the highest fermentable sugar production (0.493 g/g), achieving an 87.3% conversion yield. Pea protein demonstrated more favorable outcomes with the highest polygalacturonase activity (20.50 ± 0.52 U/L) and pectin lyase activity (46.44 ± 3.45 U/L) compared to whey protein and yeast extract used as nitrogen sources. Meanwhile, the highest polygalacturonase and pectin lyase activity, along with the highest total protein content (52.25 ± 0.06 mg/L), was recorded under the same culture conditions, reaching 164.34 ± 2.26 and 188.22 ± 1.72 U/L, respectively, after 72 h, representing approximately 1.18- and 1.34-fold increases from the batch system. Consequently, these results prove that fed-batch cultivation, utilizing black carrot pomace hydrolyzate as a feeding substrate and pea protein as a nitrogen source, significantly increases polygalacturonase and pectin lyase activity compared to batch cultivation.</p></div>","PeriodicalId":488,"journal":{"name":"Biomass Conversion and Biorefinery","volume":"15 :","pages":"8501 - 8513"},"PeriodicalIF":4.1000,"publicationDate":"2024-04-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s13399-024-05646-7.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomass Conversion and Biorefinery","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s13399-024-05646-7","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0
Abstract
Pectic enzyme groups, particularly polygalacturonase and pectin lyase, are vital components of a high-value microbial enzyme category widely employed in applications within the fruit juice and wine industries. The exploration of alternative carbon and nitrogen sources remains crucial for enhancing enzyme production while reducing costs. This study evaluates the impact of carbon (black carrot pomace) and nitrogen (pea protein) loading on fermentable sugar content, protein content, and enzyme activities during both batch and fed-batch cultivation. Additionally, three distinct valorization techniques—thermal (steam), thermochemical (steam assisted with dilute acid), and microwave-assisted with dilute acid pretreatments—were assessed for their effectiveness in hydrolyzing black carrot pomace as a carbon source. The findings indicate that microwave-assisted dilute acid, coupled with enzymatic saccharification, resulted in the highest fermentable sugar production (0.493 g/g), achieving an 87.3% conversion yield. Pea protein demonstrated more favorable outcomes with the highest polygalacturonase activity (20.50 ± 0.52 U/L) and pectin lyase activity (46.44 ± 3.45 U/L) compared to whey protein and yeast extract used as nitrogen sources. Meanwhile, the highest polygalacturonase and pectin lyase activity, along with the highest total protein content (52.25 ± 0.06 mg/L), was recorded under the same culture conditions, reaching 164.34 ± 2.26 and 188.22 ± 1.72 U/L, respectively, after 72 h, representing approximately 1.18- and 1.34-fold increases from the batch system. Consequently, these results prove that fed-batch cultivation, utilizing black carrot pomace hydrolyzate as a feeding substrate and pea protein as a nitrogen source, significantly increases polygalacturonase and pectin lyase activity compared to batch cultivation.
期刊介绍:
Biomass Conversion and Biorefinery presents articles and information on research, development and applications in thermo-chemical conversion; physico-chemical conversion and bio-chemical conversion, including all necessary steps for the provision and preparation of the biomass as well as all possible downstream processing steps for the environmentally sound and economically viable provision of energy and chemical products.