{"title":"Hypergravity Impact on Fertility of Apis mellifera carnica Queens – Case Study","authors":"Dagmara Stasiowska, Michał Kolasa","doi":"10.1007/s12217-024-10111-1","DOIUrl":null,"url":null,"abstract":"<div><p>The launch is considered the most stressful rocket flight stage due to the hypergravity occurrences. The possibility of using honey bees (<i>Apis mellifera</i>) as the extraterrestrial pollinator depends on their ability to reproduce correctly after experiencing hypergravity. The described study aims to verify the impact of a launching rocket’s acceleration on honey bee queen’s egg-laying behavior. Four artificially inseminated <i>A. mellifera carnica</i> queens were placed in the Human Training Centrifuge and given to the acceleration pattern of the launching <i>Soyuz</i> rocket. Next, the data on the number of food stores, eggs, larvae, and worker and drone pupae were collected from the test and control hives using the modified <i>Liebefeld</i> method. The pilot study results imply that accelerated queen’s egg-laying behavior may change twofold: limiting or maximizing the number of laid eggs, with the control queen egg-laying rate remaining stable for all samples. The number of drone pupae is greater for the test sample colonies, with its earlier appearance in the hive. No impact on overwintering success was observed. Authors indicate limitations of the results and a need to continue the study to verify the occurrence of anomalies potentially related to the examined factor.</p></div>","PeriodicalId":707,"journal":{"name":"Microgravity Science and Technology","volume":"36 3","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2024-04-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s12217-024-10111-1.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microgravity Science and Technology","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s12217-024-10111-1","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, AEROSPACE","Score":null,"Total":0}
引用次数: 0
Abstract
The launch is considered the most stressful rocket flight stage due to the hypergravity occurrences. The possibility of using honey bees (Apis mellifera) as the extraterrestrial pollinator depends on their ability to reproduce correctly after experiencing hypergravity. The described study aims to verify the impact of a launching rocket’s acceleration on honey bee queen’s egg-laying behavior. Four artificially inseminated A. mellifera carnica queens were placed in the Human Training Centrifuge and given to the acceleration pattern of the launching Soyuz rocket. Next, the data on the number of food stores, eggs, larvae, and worker and drone pupae were collected from the test and control hives using the modified Liebefeld method. The pilot study results imply that accelerated queen’s egg-laying behavior may change twofold: limiting or maximizing the number of laid eggs, with the control queen egg-laying rate remaining stable for all samples. The number of drone pupae is greater for the test sample colonies, with its earlier appearance in the hive. No impact on overwintering success was observed. Authors indicate limitations of the results and a need to continue the study to verify the occurrence of anomalies potentially related to the examined factor.
期刊介绍:
Microgravity Science and Technology – An International Journal for Microgravity and Space Exploration Related Research is a is a peer-reviewed scientific journal concerned with all topics, experimental as well as theoretical, related to research carried out under conditions of altered gravity.
Microgravity Science and Technology publishes papers dealing with studies performed on and prepared for platforms that provide real microgravity conditions (such as drop towers, parabolic flights, sounding rockets, reentry capsules and orbiting platforms), and on ground-based facilities aiming to simulate microgravity conditions on earth (such as levitrons, clinostats, random positioning machines, bed rest facilities, and micro-scale or neutral buoyancy facilities) or providing artificial gravity conditions (such as centrifuges).
Data from preparatory tests, hardware and instrumentation developments, lessons learnt as well as theoretical gravity-related considerations are welcome. Included science disciplines with gravity-related topics are:
− materials science
− fluid mechanics
− process engineering
− physics
− chemistry
− heat and mass transfer
− gravitational biology
− radiation biology
− exobiology and astrobiology
− human physiology