Controlling the lifetime of biodegradable electronics: from dissolution kinetics to trigger acceleration

Soft science Pub Date : 2024-04-23 DOI:10.20517/ss.2024.06
You-Jung Park, Young‐In Ryu, Myung-Kyun Choi, Kyung-Sub Kim, Seung-Kyun Kang
{"title":"Controlling the lifetime of biodegradable electronics: from dissolution kinetics to trigger acceleration","authors":"You-Jung Park, Young‐In Ryu, Myung-Kyun Choi, Kyung-Sub Kim, Seung-Kyun Kang","doi":"10.20517/ss.2024.06","DOIUrl":null,"url":null,"abstract":"Biodegradable electronics have revolutionized the field of medical devices by offering inherent advantages such as natural disintegration after a useful functional period, thereby eliminating the need for removal surgery. This paradigm shift addresses challenges with long-term implantation, the risks of secondary surgeries, and potential complications, offering a safer and more patient-friendly approach to temporary implantable devices. This review delves into the dissolution kinetics of materials and strategies for lifetime control providing a comprehensive overview of recent advancements in biodegradable electronics. Understanding the kinetics is crucial for meeting the required functional lifetime for implantable medical applications, which varies based on application scope and target diseases. The dissolution kinetics of silicon and biodegradable metals form the core of the discussion, focusing on recent studies aimed at controlling the dissolution rate and enhancing properties. The exploration extends to ideas for accelerating material degradation or initiating on-demand degradation in biodegradable electronics after stable function. Additionally, the compilation of encapsulation layer materials and strategies enhances understanding of how to improve the stable operation time of devices. Emphasis is placed on efforts to adjust the lifetime of biodegradable electronics, particularly in medical applications.","PeriodicalId":74837,"journal":{"name":"Soft science","volume":"20 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-04-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Soft science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.20517/ss.2024.06","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Biodegradable electronics have revolutionized the field of medical devices by offering inherent advantages such as natural disintegration after a useful functional period, thereby eliminating the need for removal surgery. This paradigm shift addresses challenges with long-term implantation, the risks of secondary surgeries, and potential complications, offering a safer and more patient-friendly approach to temporary implantable devices. This review delves into the dissolution kinetics of materials and strategies for lifetime control providing a comprehensive overview of recent advancements in biodegradable electronics. Understanding the kinetics is crucial for meeting the required functional lifetime for implantable medical applications, which varies based on application scope and target diseases. The dissolution kinetics of silicon and biodegradable metals form the core of the discussion, focusing on recent studies aimed at controlling the dissolution rate and enhancing properties. The exploration extends to ideas for accelerating material degradation or initiating on-demand degradation in biodegradable electronics after stable function. Additionally, the compilation of encapsulation layer materials and strategies enhances understanding of how to improve the stable operation time of devices. Emphasis is placed on efforts to adjust the lifetime of biodegradable electronics, particularly in medical applications.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
控制可生物降解电子器件的使用寿命:从溶解动力学到触发加速度
生物可降解电子器件通过提供固有的优势,如在有用功能期后自然分解,从而无需进行移除手术,在医疗器械领域掀起了一场革命。这种模式的转变解决了长期植入、二次手术风险和潜在并发症等难题,为临时植入式设备提供了一种更安全、更方便患者的方法。本综述深入探讨了材料的溶解动力学和寿命控制策略,全面概述了生物可降解电子器件的最新进展。要达到植入式医疗应用所需的功能寿命,了解其动力学至关重要。硅和生物可降解金属的溶解动力学是讨论的核心,重点是旨在控制溶解速率和提高性能的最新研究。探讨还延伸到加速材料降解或在生物可降解电子器件功能稳定后启动按需降解的想法。此外,通过对封装层材料和策略的汇编,加深了对如何提高器件稳定运行时间的理解。重点是努力调整可生物降解电子器件的使用寿命,特别是在医疗应用方面。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
3.10
自引率
0.00%
发文量
0
期刊最新文献
Unity quantum yield of InP/ZnSe/ZnS quantum dots enabled by Zn halide-derived hybrid shelling approach Recent advances in laser-induced-graphene-based soft skin electronics for intelligent healthcare Body-attachable multifunctional electronic skins for bio-signal monitoring and therapeutic applications Liquid metal neuro-electrical interface 3D-printed magnetic-based air pressure sensor for continuous respiration monitoring and breathing rehabilitation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1