Location analysis of presynaptically active and silent synapses in single-cultured hippocampal neurons

IF 4.7 3区 材料科学 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC ACS Applied Electronic Materials Pub Date : 2024-04-23 DOI:10.3389/fncir.2024.1358570
Otoya Kitaoka, Kohei Oyabu, Kaori Kubota, Takuya Watanabe, Satoru Kondo, Teppei Matsui, S. Katsurabayashi, Katsunori Iwasaki
{"title":"Location analysis of presynaptically active and silent synapses in single-cultured hippocampal neurons","authors":"Otoya Kitaoka, Kohei Oyabu, Kaori Kubota, Takuya Watanabe, Satoru Kondo, Teppei Matsui, S. Katsurabayashi, Katsunori Iwasaki","doi":"10.3389/fncir.2024.1358570","DOIUrl":null,"url":null,"abstract":"A morphologically present but non-functioning synapse is termed a silent synapse. Silent synapses are categorized into “postsynaptically silent synapses,” where AMPA receptors are either absent or non-functional, and “presynaptically silent synapses,” where neurotransmitters cannot be released from nerve terminals. The presence of presynaptically silent synapses remains enigmatic, and their physiological significance is highly intriguing. In this study, we examined the distribution and developmental changes of presynaptically active and silent synapses in individual neurons. Our findings show a gradual increase in the number of excitatory synapses, along with a corresponding decrease in the percentage of presynaptically silent synapses during neuronal development. To pinpoint the distribution of presynaptically active and silent synapses, i.e., their positional information, we employed Sholl analysis. Our results indicate that the distribution of presynaptically silent synapses within a single neuron does not exhibit a distinct pattern during synapse development in different distance from the cell body. However, irrespective of neuronal development, the proportion of presynaptically silent synapses tends to rise as the projection site moves farther from the cell body, suggesting that synapses near the cell body may exhibit higher synaptic transmission efficiency. This study represents the first observation of changes in the distribution of presynaptically active and silent synapses within a single neuron.","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":"136 5","pages":""},"PeriodicalIF":4.7000,"publicationDate":"2024-04-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3389/fncir.2024.1358570","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

A morphologically present but non-functioning synapse is termed a silent synapse. Silent synapses are categorized into “postsynaptically silent synapses,” where AMPA receptors are either absent or non-functional, and “presynaptically silent synapses,” where neurotransmitters cannot be released from nerve terminals. The presence of presynaptically silent synapses remains enigmatic, and their physiological significance is highly intriguing. In this study, we examined the distribution and developmental changes of presynaptically active and silent synapses in individual neurons. Our findings show a gradual increase in the number of excitatory synapses, along with a corresponding decrease in the percentage of presynaptically silent synapses during neuronal development. To pinpoint the distribution of presynaptically active and silent synapses, i.e., their positional information, we employed Sholl analysis. Our results indicate that the distribution of presynaptically silent synapses within a single neuron does not exhibit a distinct pattern during synapse development in different distance from the cell body. However, irrespective of neuronal development, the proportion of presynaptically silent synapses tends to rise as the projection site moves farther from the cell body, suggesting that synapses near the cell body may exhibit higher synaptic transmission efficiency. This study represents the first observation of changes in the distribution of presynaptically active and silent synapses within a single neuron.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
单培养海马神经元突触前活跃和沉默突触的位置分析
形态上存在但无功能的突触被称为沉默突触。沉默突触分为 "突触后沉默突触 "和 "突触前沉默突触",前者的 AMPA 受体不存在或不起作用,后者的神经递质不能从神经末梢释放。突触前沉默突触的存在仍然是一个谜,其生理意义也非常引人关注。在这项研究中,我们考察了单个神经元中突触前活跃突触和沉默突触的分布和发育变化。我们的研究结果表明,在神经元发育过程中,兴奋性突触的数量逐渐增加,而突触前沉默突触的比例则相应减少。为了精确定位突触前活跃和沉默突触的分布,即它们的位置信息,我们采用了 Sholl 分析法。我们的结果表明,突触前沉默突触在单个神经元内的分布在突触发育过程中与细胞体的不同距离并不表现出明显的模式。然而,无论神经元的发育如何,突触前沉默突触的比例随着投射点远离细胞体而呈上升趋势,这表明靠近细胞体的突触可能表现出更高的突触传递效率。这项研究首次观察到单个神经元内突触前活跃突触和沉默突触分布的变化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
7.20
自引率
4.30%
发文量
567
期刊介绍: ACS Applied Electronic Materials is an interdisciplinary journal publishing original research covering all aspects of electronic materials. The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrate knowledge in the areas of materials science, engineering, optics, physics, and chemistry into important applications of electronic materials. Sample research topics that span the journal's scope are inorganic, organic, ionic and polymeric materials with properties that include conducting, semiconducting, superconducting, insulating, dielectric, magnetic, optoelectronic, piezoelectric, ferroelectric and thermoelectric. Indexed/​Abstracted: Web of Science SCIE Scopus CAS INSPEC Portico
期刊最新文献
Issue Publication Information Issue Editorial Masthead Corroborating the Monro-Kellie Principles. High-Performance Flexible Strain Sensor Enhanced by Functionally Partitioned Conductive Network for Intelligent Monitoring of Human Activities Carbon Nanotube-Enhanced Liquid Metal Composite Ink for Strain Sensing and Digital Recognition
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1