Intelligent vehicle trajectory tracking control based on physics-informed neural network dynamics model

Xiuchen Cao, Yingfeng Cai, Yicheng Li, Xiaoqiang Sun, Long Chen, Hai Wang
{"title":"Intelligent vehicle trajectory tracking control based on physics-informed neural network dynamics model","authors":"Xiuchen Cao, Yingfeng Cai, Yicheng Li, Xiaoqiang Sun, Long Chen, Hai Wang","doi":"10.1177/09544070241244858","DOIUrl":null,"url":null,"abstract":"In order to solve the accuracy problem of trajectory tracking control method based on data-driven model, an intelligent vehicle trajectory tracking control method based on physics-informed neural network (PINN) vehicle dynamics model is proposed. Aiming at the problem of poor interpretability of data-driven model, a vehicle dynamics model based on the PINN is established, and the physics-driven deep learning method is used instead of the data-driven deep learning method to obtain the dynamic characteristics of the intelligent vehicle, to benefit from both the physical-based method and the data-driven method. A sequential training method is also proposed to solve the coupling problem when training multiple PINNs simultaneously. The model takes the nonlinearity of the neural network model and physical interpretability into consideration compared to the standard neural network model. Then, based on the PINN vehicle dynamics model, a trajectory tracking controller based on the iterative linear quadratic regulator (ILQR) control algorithm is developed. The optimal control law is derived by optimizing the ILQR control algorithm to implement the intelligent vehicle’s precise and stable tracking for the desired trajectory. The Levenberg-Marquardt (LM) algorithm and line search technology are used and damping factor adjustment rules are set up to enhance the convergence performance of the ILQR control algorithm. In order to verify the effectiveness of the proposed method, the simulation is conducted under the condition of double lane change. The simulation results demonstrate that the proposed method can track the reference trajectory accurately under the limited conditions. Its control performance is much better than other algorithms.","PeriodicalId":509770,"journal":{"name":"Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering","volume":"134 49","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-04-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1177/09544070241244858","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In order to solve the accuracy problem of trajectory tracking control method based on data-driven model, an intelligent vehicle trajectory tracking control method based on physics-informed neural network (PINN) vehicle dynamics model is proposed. Aiming at the problem of poor interpretability of data-driven model, a vehicle dynamics model based on the PINN is established, and the physics-driven deep learning method is used instead of the data-driven deep learning method to obtain the dynamic characteristics of the intelligent vehicle, to benefit from both the physical-based method and the data-driven method. A sequential training method is also proposed to solve the coupling problem when training multiple PINNs simultaneously. The model takes the nonlinearity of the neural network model and physical interpretability into consideration compared to the standard neural network model. Then, based on the PINN vehicle dynamics model, a trajectory tracking controller based on the iterative linear quadratic regulator (ILQR) control algorithm is developed. The optimal control law is derived by optimizing the ILQR control algorithm to implement the intelligent vehicle’s precise and stable tracking for the desired trajectory. The Levenberg-Marquardt (LM) algorithm and line search technology are used and damping factor adjustment rules are set up to enhance the convergence performance of the ILQR control algorithm. In order to verify the effectiveness of the proposed method, the simulation is conducted under the condition of double lane change. The simulation results demonstrate that the proposed method can track the reference trajectory accurately under the limited conditions. Its control performance is much better than other algorithms.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于物理信息神经网络动力学模型的智能车辆轨迹跟踪控制
为了解决基于数据驱动模型的轨迹跟踪控制方法的精度问题,提出了一种基于物理信息神经网络(PINN)车辆动力学模型的智能车辆轨迹跟踪控制方法。针对数据驱动模型可解释性差的问题,建立了基于 PINN 的车辆动力学模型,并用物理驱动深度学习方法代替数据驱动深度学习方法来获取智能车辆的动态特性,从而同时受益于基于物理的方法和数据驱动的方法。此外,还提出了一种顺序训练方法,以解决同时训练多个 PINN 时的耦合问题。与标准神经网络模型相比,该模型考虑了神经网络模型的非线性和物理可解释性。然后,基于 PINN 车辆动力学模型,开发了基于迭代线性二次调节器 (ILQR) 控制算法的轨迹跟踪控制器。通过优化 ILQR 控制算法得出最优控制法则,以实现智能车辆对所需轨迹的精确稳定跟踪。采用 Levenberg-Marquardt (LM) 算法和直线搜索技术,并设置了阻尼系数调整规则,以提高 ILQR 控制算法的收敛性能。为了验证所提方法的有效性,在双车道变化条件下进行了仿真。仿真结果表明,所提出的方法能在有限条件下精确地跟踪参考轨迹。其控制性能远远优于其他算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Influence of filler-reinforced carbon fibers on the frictional properties of composite synchronizer rings Long-short-time domain torque optimal prediction and allocation method for electric logistics vehicles with electro-hydraulic composite steering system Autonomous vehicle platoon overtaking at a uniform speed based on improved artificial potential field method Prediction of emission and performance of internal combustion engine via regression deep learning approach Influence of surface activated nanophase Pr6O11 particles on the physio-chemical and tribological characteristics of SAE20W40 automotive lubricant
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1