Didier Barret, Vincent Albouys, Jürgen Knödlseder, Xavier Loizillon, Matteo D’Andrea, Florence Ardellier, Simon Bandler, Pieter Dieleman, Lionel Duband, Luc Dubbeldam, Claudio Macculi, Eduardo Medinaceli, François Pajot, Damien Prêle, Laurent Ravera, Tanguy Thibert, Isabel Vera Trallero, Natalie Webb
{"title":"Life cycle assessment of the Athena X-ray integral field unit","authors":"Didier Barret, Vincent Albouys, Jürgen Knödlseder, Xavier Loizillon, Matteo D’Andrea, Florence Ardellier, Simon Bandler, Pieter Dieleman, Lionel Duband, Luc Dubbeldam, Claudio Macculi, Eduardo Medinaceli, François Pajot, Damien Prêle, Laurent Ravera, Tanguy Thibert, Isabel Vera Trallero, Natalie Webb","doi":"10.1007/s10686-024-09939-7","DOIUrl":null,"url":null,"abstract":"<div><p>The X-ray Integral Field Unit (X-IFU) is the high-resolution X-ray spectrometer to fly on board the Athena Space Observatory of the European Space Agency (ESA). It is being developed by an international Consortium led by France, involving twelve ESA member states, plus the United States. It is a cryogenic instrument, involving state of the art technology, such as micro-calorimeters, to be read out by low noise electronics. As the instrument was undergoing its system requirement review (in 2022), a life cycle assessment (LCA) was performed to estimate the environmental impacts associated with the development of the sub-systems that were under the responsibility of the X-IFU Consortium. The assessment included the supply, manufacturing and testing of sub systems, as well as involved logistics and manpower. We find that the most significant environmental impacts arise from testing activities, which is related to energy consumption in clean rooms, office work, which is related to energy consumption in office buildings, and instrument manufacturing, which is related to the use of mineral and metal resources. Furthermore, business travels is another area of concern, despite the policy to reduced flying adopted by the Consortium. As the instrument is now being redesigned to fit within the new boundaries set by ESA, the LCA will be updated, with a focus on the hot spots identified in the first iteration. The new configuration, consolidated in 2023, is significantly different from the previously studied version and is marked by an increase of the perimeter of responsibility for the Consortium. This will need to be folded in the updated LCA, keeping the ambition to reduce the environmental footprint of X-IFU, while complying with its stringent requirements in terms of performance and risk management.</p></div>","PeriodicalId":551,"journal":{"name":"Experimental Astronomy","volume":"57 3","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2024-04-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10686-024-09939-7.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Experimental Astronomy","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/s10686-024-09939-7","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 0
Abstract
The X-ray Integral Field Unit (X-IFU) is the high-resolution X-ray spectrometer to fly on board the Athena Space Observatory of the European Space Agency (ESA). It is being developed by an international Consortium led by France, involving twelve ESA member states, plus the United States. It is a cryogenic instrument, involving state of the art technology, such as micro-calorimeters, to be read out by low noise electronics. As the instrument was undergoing its system requirement review (in 2022), a life cycle assessment (LCA) was performed to estimate the environmental impacts associated with the development of the sub-systems that were under the responsibility of the X-IFU Consortium. The assessment included the supply, manufacturing and testing of sub systems, as well as involved logistics and manpower. We find that the most significant environmental impacts arise from testing activities, which is related to energy consumption in clean rooms, office work, which is related to energy consumption in office buildings, and instrument manufacturing, which is related to the use of mineral and metal resources. Furthermore, business travels is another area of concern, despite the policy to reduced flying adopted by the Consortium. As the instrument is now being redesigned to fit within the new boundaries set by ESA, the LCA will be updated, with a focus on the hot spots identified in the first iteration. The new configuration, consolidated in 2023, is significantly different from the previously studied version and is marked by an increase of the perimeter of responsibility for the Consortium. This will need to be folded in the updated LCA, keeping the ambition to reduce the environmental footprint of X-IFU, while complying with its stringent requirements in terms of performance and risk management.
期刊介绍:
Many new instruments for observing astronomical objects at a variety of wavelengths have been and are continually being developed. Furthermore, a vast amount of effort is being put into the development of new techniques for data analysis in order to cope with great streams of data collected by these instruments.
Experimental Astronomy acts as a medium for the publication of papers of contemporary scientific interest on astrophysical instrumentation and methods necessary for the conduct of astronomy at all wavelength fields.
Experimental Astronomy publishes full-length articles, research letters and reviews on developments in detection techniques, instruments, and data analysis and image processing techniques. Occasional special issues are published, giving an in-depth presentation of the instrumentation and/or analysis connected with specific projects, such as satellite experiments or ground-based telescopes, or of specialized techniques.