Molten Bismuth–Bismuth/Zinc Oxide Composites for High-Temperature Thermal Energy Storage

IF 3.1 4区 化学 Q2 CHEMISTRY, INORGANIC & NUCLEAR Inorganics Pub Date : 2024-04-23 DOI:10.3390/inorganics12050126
C. Vlăduț, Daniel Lincu, Daniela Berger, C. Matei, R. Mitran
{"title":"Molten Bismuth–Bismuth/Zinc Oxide Composites for High-Temperature Thermal Energy Storage","authors":"C. Vlăduț, Daniel Lincu, Daniela Berger, C. Matei, R. Mitran","doi":"10.3390/inorganics12050126","DOIUrl":null,"url":null,"abstract":"Thermal energy storage is at the leading edge of various applications, including waste heat recovery, solar storage and zero-energy buildings. Phase change materials (PCMs) can be utilized to store heat through reversible solid–liquid phase transitions. PCMs provide high energy storage capacity at a constant temperature. The volume change during the phase transition, on the other hand, causes inconsistency in crystallization and leakage, increasing the system’s complexity and shortening the lifetime of these materials. These shortcomings can be diminished by impregnation in a porous matrix or encapsulation with an inert shell, resulting in shape-stabilized PCMs that maintain their macroscopic shape during phase change. The synthesis and properties of Bi/ZnO nanocomposites were investigated in order to obtain shape-stabilized phase change materials. All samples consisted of metallic Bi and oxide, doped with 1–3% at. zinc. Heat storage capacities between 31 and 49 Jg−1 were obtained, depending on the mass fraction of the metal. All samples had good thermal reliability, retaining their heat storage properties after 50 consecutive heating–cooling cycles. An average oxide layer thickness of 75–100 nm is sufficient to prevent the molten metal leakage at temperatures above its melting point, resulting in shape-stabilized PCMs.","PeriodicalId":13572,"journal":{"name":"Inorganics","volume":null,"pages":null},"PeriodicalIF":3.1000,"publicationDate":"2024-04-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Inorganics","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.3390/inorganics12050126","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, INORGANIC & NUCLEAR","Score":null,"Total":0}
引用次数: 0

Abstract

Thermal energy storage is at the leading edge of various applications, including waste heat recovery, solar storage and zero-energy buildings. Phase change materials (PCMs) can be utilized to store heat through reversible solid–liquid phase transitions. PCMs provide high energy storage capacity at a constant temperature. The volume change during the phase transition, on the other hand, causes inconsistency in crystallization and leakage, increasing the system’s complexity and shortening the lifetime of these materials. These shortcomings can be diminished by impregnation in a porous matrix or encapsulation with an inert shell, resulting in shape-stabilized PCMs that maintain their macroscopic shape during phase change. The synthesis and properties of Bi/ZnO nanocomposites were investigated in order to obtain shape-stabilized phase change materials. All samples consisted of metallic Bi and oxide, doped with 1–3% at. zinc. Heat storage capacities between 31 and 49 Jg−1 were obtained, depending on the mass fraction of the metal. All samples had good thermal reliability, retaining their heat storage properties after 50 consecutive heating–cooling cycles. An average oxide layer thickness of 75–100 nm is sufficient to prevent the molten metal leakage at temperatures above its melting point, resulting in shape-stabilized PCMs.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用于高温热能存储的熔融铋铋/氧化锌复合材料
热能储存在各种应用中都处于领先地位,包括废热回收、太阳能储存和零能耗建筑。相变材料(PCM)可通过可逆的固-液相变来储存热量。PCM 在恒温条件下具有很高的储能能力。另一方面,相变过程中的体积变化会导致结晶不一致和泄漏,从而增加系统的复杂性并缩短这些材料的使用寿命。通过在多孔基质中浸渍或用惰性外壳封装,可以减少这些缺点,从而获得形状稳定的 PCM,在相变过程中保持其宏观形状。为了获得形状稳定的相变材料,我们研究了 Bi/ZnO 纳米复合材料的合成和特性。所有样品都由金属 Bi 和氧化物组成,其中掺杂了 1-3% 的锌。根据金属的质量分数,获得了 31 至 49 Jg-1 的热存储容量。所有样品都具有良好的热可靠性,在连续 50 次加热-冷却循环后仍能保持其储热特性。平均 75-100 nm 的氧化层厚度足以防止熔融金属在熔点以上的温度下泄漏,从而形成形状稳定的 PCM。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Inorganics
Inorganics Chemistry-Inorganic Chemistry
CiteScore
2.80
自引率
10.30%
发文量
193
审稿时长
6 weeks
期刊介绍: Inorganics is an open access journal that covers all aspects of inorganic chemistry research. Topics include but are not limited to: synthesis and characterization of inorganic compounds, complexes and materials structure and bonding in inorganic molecular and solid state compounds spectroscopic, magnetic, physical and chemical properties of inorganic compounds chemical reactivity, physical properties and applications of inorganic compounds and materials mechanisms of inorganic reactions organometallic compounds inorganic cluster chemistry heterogenous and homogeneous catalytic reactions promoted by inorganic compounds thermodynamics and kinetics of significant new and known inorganic compounds supramolecular systems and coordination polymers bio-inorganic chemistry and applications of inorganic compounds in biological systems and medicine environmental and sustainable energy applications of inorganic compounds and materials MD
期刊最新文献
Iron–Sulfur Clusters: Assembly and Biological Roles Improving Charge Transport in Perovskite Solar Cells Using Solvent Additive Technique 2,1,3-Benzoselenadiazole as Mono- and Bidentate N-Donor for Heteroleptic Cu(I) Complexes: Synthesis, Characterization and Photophysical Properties Electrochemically Active Copper Complexes with Pyridine-Alkoxide Ligands Exploring the Anti-Corrosion, Photocatalytic, and Adsorptive Functionalities of Biogenically Synthesized Zinc Oxide Nanoparticles
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1