Christopher Webber, Erica K. Richardson, Diane A. Dickie, T. Gunnoe
{"title":"Electrochemically Active Copper Complexes with Pyridine-Alkoxide Ligands","authors":"Christopher Webber, Erica K. Richardson, Diane A. Dickie, T. Gunnoe","doi":"10.3390/inorganics12080200","DOIUrl":null,"url":null,"abstract":"Pyridine-alkoxide (pyalk) ligands that support transition metals have been studied for their use in electrocatalytic applications. Herein, we used the pyalk proligands diphenyl(pyridin-2-yl)methanol ([H]PhPyalk, L1), 1-(pyren-1-yl)-1-(pyridin-2-yl)ethan-1-ol ([H]PyrPyalk, L2), 1-(pyridine-2-yl)-1-(thiophen-2-yl)ethan-1-ol ([H]ThioPyalk, L3), and 1-(ferrocenyl)-1-(pyridin-2-yl)ethan-1-ol ([H]FePyalk, L4) to synthesize CuII complexes that vary in nuclearity and secondary coordination sphere. Also, the proligand 1-(ferrocenyl)-1-(5-methoxy-pyridin-2-yl)ethan-1-ol ([H]FeOMePyalk, L5) was synthesized with a methoxy substituted pyridine; however, the isolation of a CuII complex ligated by L5 was not possible. Under variable reaction conditions, the pyalk ligands reacted with CuII precursors and formed either mononuclear or dinuclear CuII complexes depending on the amount of ligand added. The resulting complexes were characterized by single crystal X-ray diffraction, elemental analysis, and cyclic voltammetry.","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":"1 11","pages":""},"PeriodicalIF":4.7000,"publicationDate":"2024-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.3390/inorganics12080200","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
Pyridine-alkoxide (pyalk) ligands that support transition metals have been studied for their use in electrocatalytic applications. Herein, we used the pyalk proligands diphenyl(pyridin-2-yl)methanol ([H]PhPyalk, L1), 1-(pyren-1-yl)-1-(pyridin-2-yl)ethan-1-ol ([H]PyrPyalk, L2), 1-(pyridine-2-yl)-1-(thiophen-2-yl)ethan-1-ol ([H]ThioPyalk, L3), and 1-(ferrocenyl)-1-(pyridin-2-yl)ethan-1-ol ([H]FePyalk, L4) to synthesize CuII complexes that vary in nuclearity and secondary coordination sphere. Also, the proligand 1-(ferrocenyl)-1-(5-methoxy-pyridin-2-yl)ethan-1-ol ([H]FeOMePyalk, L5) was synthesized with a methoxy substituted pyridine; however, the isolation of a CuII complex ligated by L5 was not possible. Under variable reaction conditions, the pyalk ligands reacted with CuII precursors and formed either mononuclear or dinuclear CuII complexes depending on the amount of ligand added. The resulting complexes were characterized by single crystal X-ray diffraction, elemental analysis, and cyclic voltammetry.
期刊介绍:
ACS Applied Electronic Materials is an interdisciplinary journal publishing original research covering all aspects of electronic materials. The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrate knowledge in the areas of materials science, engineering, optics, physics, and chemistry into important applications of electronic materials. Sample research topics that span the journal's scope are inorganic, organic, ionic and polymeric materials with properties that include conducting, semiconducting, superconducting, insulating, dielectric, magnetic, optoelectronic, piezoelectric, ferroelectric and thermoelectric.
Indexed/Abstracted:
Web of Science SCIE
Scopus
CAS
INSPEC
Portico