Dynamic modeling and contraction metric-based tube model predictive control for mineral hydraulic collection

Min Jiang, Xinjiang Lu, Hongyun Wu, Binzheng Chen
{"title":"Dynamic modeling and contraction metric-based tube model predictive control for mineral hydraulic collection","authors":"Min Jiang, Xinjiang Lu, Hongyun Wu, Binzheng Chen","doi":"10.1177/00202940241241407","DOIUrl":null,"url":null,"abstract":"Efficient mineral hydraulic collection is a key issue in the mining of deep-sea minerals, where the collection efficiency is related to the lifted fluid velocity and the mineral particle velocity. In this paper, a robust control contraction metric (RCCM)-based tube model predictive control (Tube-MPC) for efficient mineral hydraulic collection is proposed. Firstly, a simplified control model is designed with empirical formula of hydrodynamic forces to avoid the computational burden in solution of the fluid equations. Secondly, a nonlinear programing problem (NLP) for efficiency optimization is formulated to calculate the nominal control law and the optimal state. To address external disturbance and model mismatch from the simplified model, a robust control contraction metric is utilized to calculate the feedback control law to track the optimal state. Finally, numerical simulations and experiments are conducted to verify the mineral hydraulic collection performance of the control strategy.","PeriodicalId":510299,"journal":{"name":"Measurement and Control","volume":"56 14","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-04-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Measurement and Control","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1177/00202940241241407","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Efficient mineral hydraulic collection is a key issue in the mining of deep-sea minerals, where the collection efficiency is related to the lifted fluid velocity and the mineral particle velocity. In this paper, a robust control contraction metric (RCCM)-based tube model predictive control (Tube-MPC) for efficient mineral hydraulic collection is proposed. Firstly, a simplified control model is designed with empirical formula of hydrodynamic forces to avoid the computational burden in solution of the fluid equations. Secondly, a nonlinear programing problem (NLP) for efficiency optimization is formulated to calculate the nominal control law and the optimal state. To address external disturbance and model mismatch from the simplified model, a robust control contraction metric is utilized to calculate the feedback control law to track the optimal state. Finally, numerical simulations and experiments are conducted to verify the mineral hydraulic collection performance of the control strategy.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
矿物水力采集的动态建模和基于收缩度量的管道模型预测控制
高效矿物液压采集是深海矿物开采中的一个关键问题,采集效率与提升流体速度和矿物颗粒速度有关。本文提出了一种基于鲁棒控制收缩度量(RCCM)的管道模型预测控制(Tube-MPC),用于高效矿物水力采集。首先,利用流体动力的经验公式设计了一个简化的控制模型,以避免在求解流体方程时的计算负担。其次,提出了效率优化的非线性编程问题(NLP),以计算名义控制法和最佳状态。为解决简化模型的外部干扰和模型不匹配问题,利用鲁棒控制收缩度量来计算反馈控制法,以跟踪最佳状态。最后,通过数值模拟和实验验证了控制策略的矿物水力收集性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Investigating math education in reducing math anxiety with the help of Data Envelopment Analysis Optimal control technique applied to the minimization of uncertainty measurements in surveying instruments Development of motion control function library based on PLCopen specification Tillage depth dynamic monitoring and precise control system Semantic mapping techniques for indoor mobile robots: Review and prospect
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1