Electrochemical Investigation of Lithium Perchlorate-Doped Polypyrrole Growing on Titanium Substrate

IF 3.1 4区 化学 Q2 CHEMISTRY, INORGANIC & NUCLEAR Inorganics Pub Date : 2024-04-22 DOI:10.3390/inorganics12040125
Yibing Xie, Jing Xu, Lu Lu, Chi Xia
{"title":"Electrochemical Investigation of Lithium Perchlorate-Doped Polypyrrole Growing on Titanium Substrate","authors":"Yibing Xie, Jing Xu, Lu Lu, Chi Xia","doi":"10.3390/inorganics12040125","DOIUrl":null,"url":null,"abstract":"Lithium perchlorate-doped polypyrrole growing on titanium substrate (LiClO4-PPy/Ti) has been fabricated to act as electroactive electrode material for feasible electrochemical energy storage. A theoretical and experimental investigation is adopted to disclose the conductivity, electroactivity properties and interfacial interaction-dependent capacitance of LiClO4-PPy/Ti electrode. The experimental measurement results disclose that LiClO4-PPy/Ti reveals lower ohmic resistance (0.2226 Ω cm−2) and charge transfer resistance (2116 Ω cm−2) to exhibit higher electrochemical conductivity, a more reactive surface, and feasible ion diffusion to present higher double-layer capacitance (0.1930 mF cm−2) rather than LiClO4/Ti (0.3660 Ω cm−2, 65,250 Ω cm−2, 0.0334 mF cm−2). LiClO4-PPy/Ti reveals higher Faradaic capacitance caused by the reversible doping and dedoping process of perchlorate ion on PPy than the electrical double-layer capacitance of LiClO4/Ti caused by the reversible adsorption and desorption process of the LiClO4 electrolyte on Ti. Theoretical simulation calculation results prove that a more intensive electrostatic interaction of pyrrole N···Ti (2.450 Å) in LiClO4-PPy/Ti rather than perchlorate O···Ti (3.537 Å) in LiClO4/Ti. LiClO4-PPy/Ti exhibits higher density of states (57.321 electrons/eV) at Fermi energy and lower HOMO-LUMO molecule orbital energy gap (0.032 eV) than LiClO4/Ti (9.652 electrons/eV, 0.340 eV) to present the enhanced electronic conductivity. LiClO4-PPy/Ti also exhibits a more declined interface energy (−1.461 × 104) than LiClO4/Ti (−5.202 × 103 eV) to present the intensified interfacial interaction. LiClO4-PPy/Ti accordingly exhibits much higher specific capacitances of 0.123~0.0122 mF cm−2 at current densities of 0.01~0.10 mA cm−2 rather than LiClO4/Ti (0.010~0.0095 mF cm−2, presenting superior electroactivity and electrochemical capacitance properties. LiClO4-PPy/Ti could well act as the electroactive supercapacitor electrode for feasible energy storage.","PeriodicalId":13572,"journal":{"name":"Inorganics","volume":null,"pages":null},"PeriodicalIF":3.1000,"publicationDate":"2024-04-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Inorganics","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.3390/inorganics12040125","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, INORGANIC & NUCLEAR","Score":null,"Total":0}
引用次数: 0

Abstract

Lithium perchlorate-doped polypyrrole growing on titanium substrate (LiClO4-PPy/Ti) has been fabricated to act as electroactive electrode material for feasible electrochemical energy storage. A theoretical and experimental investigation is adopted to disclose the conductivity, electroactivity properties and interfacial interaction-dependent capacitance of LiClO4-PPy/Ti electrode. The experimental measurement results disclose that LiClO4-PPy/Ti reveals lower ohmic resistance (0.2226 Ω cm−2) and charge transfer resistance (2116 Ω cm−2) to exhibit higher electrochemical conductivity, a more reactive surface, and feasible ion diffusion to present higher double-layer capacitance (0.1930 mF cm−2) rather than LiClO4/Ti (0.3660 Ω cm−2, 65,250 Ω cm−2, 0.0334 mF cm−2). LiClO4-PPy/Ti reveals higher Faradaic capacitance caused by the reversible doping and dedoping process of perchlorate ion on PPy than the electrical double-layer capacitance of LiClO4/Ti caused by the reversible adsorption and desorption process of the LiClO4 electrolyte on Ti. Theoretical simulation calculation results prove that a more intensive electrostatic interaction of pyrrole N···Ti (2.450 Å) in LiClO4-PPy/Ti rather than perchlorate O···Ti (3.537 Å) in LiClO4/Ti. LiClO4-PPy/Ti exhibits higher density of states (57.321 electrons/eV) at Fermi energy and lower HOMO-LUMO molecule orbital energy gap (0.032 eV) than LiClO4/Ti (9.652 electrons/eV, 0.340 eV) to present the enhanced electronic conductivity. LiClO4-PPy/Ti also exhibits a more declined interface energy (−1.461 × 104) than LiClO4/Ti (−5.202 × 103 eV) to present the intensified interfacial interaction. LiClO4-PPy/Ti accordingly exhibits much higher specific capacitances of 0.123~0.0122 mF cm−2 at current densities of 0.01~0.10 mA cm−2 rather than LiClO4/Ti (0.010~0.0095 mF cm−2, presenting superior electroactivity and electrochemical capacitance properties. LiClO4-PPy/Ti could well act as the electroactive supercapacitor electrode for feasible energy storage.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
掺杂高氯酸锂的聚吡咯在钛基底上生长的电化学研究
在钛基底上生长的掺杂高氯酸锂的聚吡咯(LiClO4-PPy/Ti)被制作成电活性电极材料,用于可行的电化学储能。通过理论和实验研究,揭示了 LiClO4-PPy/Ti 电极的电导率、电活性特性和界面相互作用电容。实验测量结果表明,LiClO4-PPy/Ti 具有更低的欧姆电阻(0.2226 Ω cm-2)和电荷转移电阻(2116 Ω cm-2),从而表现出更高的电化学电导率、更高活性的表面和可行的离子扩散,从而呈现出比 LiClO4/Ti (0.3660 Ω cm-2、65250 Ω cm-2、0.0334 mF cm-2)更高的双层电容(0.1930 mF cm-2)。由于高氯酸盐离子在 PPy 上的可逆掺杂和反掺杂过程,LiClO4-PPy/Ti 的法拉第电容比 LiClO4/Ti 的双电层电容高,后者是由于 LiClO4 电解质在 Ti 上的可逆吸附和解吸过程造成的。理论模拟计算结果证明,LiClO4-PPy/Ti 中吡咯 N--Ti(2.450 Å)的静电作用比 LiClO4/Ti 中高氯酸盐 O--Ti(3.537 Å)的静电作用更强。与 LiClO4/Ti (9.652 电子/电子伏特,0.340 电子伏特)相比,LiClO4-PPy/Ti 在费米能处显示出更高的状态密度(57.321 电子/电子伏特)和更低的 HOMO-LUMO 分子轨道能隙(0.032 电子伏特),从而增强了电子导电性。LiClO4-PPy/Ti 的界面能(-1.461 × 104)也比 LiClO4/Ti 的界面能(-5.202 × 103 eV)更低,表明界面相互作用增强。因此,在电流密度为 0.01~0.10 mA cm-2 时,LiClO4-PPy/Ti 的比电容为 0.123~0.0122 mF cm-2,远高于 LiClO4/Ti(0.010~0.0095 mF cm-2),显示出更优越的电活性和电化学电容特性。LiClO4-PPy/Ti完全可以作为电活性超级电容器电极进行可行的能量存储。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Inorganics
Inorganics Chemistry-Inorganic Chemistry
CiteScore
2.80
自引率
10.30%
发文量
193
审稿时长
6 weeks
期刊介绍: Inorganics is an open access journal that covers all aspects of inorganic chemistry research. Topics include but are not limited to: synthesis and characterization of inorganic compounds, complexes and materials structure and bonding in inorganic molecular and solid state compounds spectroscopic, magnetic, physical and chemical properties of inorganic compounds chemical reactivity, physical properties and applications of inorganic compounds and materials mechanisms of inorganic reactions organometallic compounds inorganic cluster chemistry heterogenous and homogeneous catalytic reactions promoted by inorganic compounds thermodynamics and kinetics of significant new and known inorganic compounds supramolecular systems and coordination polymers bio-inorganic chemistry and applications of inorganic compounds in biological systems and medicine environmental and sustainable energy applications of inorganic compounds and materials MD
期刊最新文献
Iron–Sulfur Clusters: Assembly and Biological Roles Improving Charge Transport in Perovskite Solar Cells Using Solvent Additive Technique 2,1,3-Benzoselenadiazole as Mono- and Bidentate N-Donor for Heteroleptic Cu(I) Complexes: Synthesis, Characterization and Photophysical Properties Electrochemically Active Copper Complexes with Pyridine-Alkoxide Ligands Exploring the Anti-Corrosion, Photocatalytic, and Adsorptive Functionalities of Biogenically Synthesized Zinc Oxide Nanoparticles
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1