Riccardo Gotti, Luca Carrà, Sara Pizzurro, Giuliano Piccinno, Antonio Agnesi, Federico Pirzio
{"title":"1 MW Peak-Power Mamyshev Oscillator Started by a Passively Q-Switched Microchip Laser","authors":"Riccardo Gotti, Luca Carrà, Sara Pizzurro, Giuliano Piccinno, Antonio Agnesi, Federico Pirzio","doi":"10.1002/adpr.202400028","DOIUrl":null,"url":null,"abstract":"<p>Ultrafast fiber lasers (UFLs) have become an attractive alternative to solid-state lasers (SSL) due to their excellent beam quality, compactness, environmental stability, and easy thermal management. In the last decade, a significant research effort is spent to identify UFL architectures providing pulse energy, duration, and peak power comparable to those of complex and expensive, Ti:sapphire laser systems and semiconductor saturable absorber mirrors mode-locked, Yb-doped SSL. Lately, Mamyshev oscillators (MOs), relying on offset spectral filtering combined with nonlinear spectral broadening by self-phase modulation, emerge as a promising solution and are rapidly becoming the state of the art for high energy/peak power UFLs based on large-mode-area (LMA) fibers. The focus of this work is the first demonstration of starting of the mode-locking regime in an LMA MO with an affordable passively Q-switched microchip laser. This solution was previously demonstrated only in low-power MO based on single-mode fibers, which are intrinsically easier to seed, if compared to high-gain LMA UFLs, because of the lower amplified spontaneous emission noise floor. This starting technique in an easy-to-implement ring LMA MO at 1 μm is tested. The oscillator provides ≈50 nJ pulses at 12 MHz repetition rate with a minimum pulse duration of ≈50 fs after compression, resulting in MW peak power.</p>","PeriodicalId":7263,"journal":{"name":"Advanced Photonics Research","volume":"5 11","pages":""},"PeriodicalIF":3.7000,"publicationDate":"2024-04-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/adpr.202400028","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Photonics Research","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/adpr.202400028","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Ultrafast fiber lasers (UFLs) have become an attractive alternative to solid-state lasers (SSL) due to their excellent beam quality, compactness, environmental stability, and easy thermal management. In the last decade, a significant research effort is spent to identify UFL architectures providing pulse energy, duration, and peak power comparable to those of complex and expensive, Ti:sapphire laser systems and semiconductor saturable absorber mirrors mode-locked, Yb-doped SSL. Lately, Mamyshev oscillators (MOs), relying on offset spectral filtering combined with nonlinear spectral broadening by self-phase modulation, emerge as a promising solution and are rapidly becoming the state of the art for high energy/peak power UFLs based on large-mode-area (LMA) fibers. The focus of this work is the first demonstration of starting of the mode-locking regime in an LMA MO with an affordable passively Q-switched microchip laser. This solution was previously demonstrated only in low-power MO based on single-mode fibers, which are intrinsically easier to seed, if compared to high-gain LMA UFLs, because of the lower amplified spontaneous emission noise floor. This starting technique in an easy-to-implement ring LMA MO at 1 μm is tested. The oscillator provides ≈50 nJ pulses at 12 MHz repetition rate with a minimum pulse duration of ≈50 fs after compression, resulting in MW peak power.