Enhancing Sustainability in Construction: Investigating the Thermal Advantages of Fly Ash-Coated Expanded Polystyrene Lightweight Concrete

A. Wibowo, M. Saidani, M. Khorami
{"title":"Enhancing Sustainability in Construction: Investigating the Thermal Advantages of Fly Ash-Coated Expanded Polystyrene Lightweight Concrete","authors":"A. Wibowo, M. Saidani, M. Khorami","doi":"10.3390/jcs8040157","DOIUrl":null,"url":null,"abstract":"This study investigates a sustainable coating method for modified expanded polystyrene (MEPS) beads to improve the thermal insulation of lightweight concrete intended for wall application. The method employed in this study is based on a novel coating technique that represents a significant advancement in modifying Expanded Polystyrene (EPS) beads for enhanced lightweight concrete. This study experimentally assessed the energy-saving capabilities of MEPS concrete in comparison to control groups of uncoated EPS beads and normal concrete by analysing early-stage temperature, thermal conductivity, specific heat capacity, heat flux, and thermal diffusivity. The thermal conductivity of MEPS concrete is approximately 40% lower than that of normal concrete, demonstrating its usefulness in enhancing insulation. The heat flux calculated for MEPS concrete is significantly reduced (approximately 35%), and it has a 20% lower specific heat capacity than ordinary concrete, indicating a reduction in energy transfer through the material and, thus, potential energy-efficiency benefits. Furthermore, the study discovered that all test objects have very low thermal diffusivity values (less than 0.5 × 10−6 m2/s), indicating a slower heat transport through the material. The sustainable coating method utilized fly ash-enhanced thermal efficiency and employed recycled materials, hence decreasing the environmental impact. MEPS concrete provides a practical option for creating sustainable and comfortable buildings through the promotion of energy-efficient wall construction. Concrete incorporating coated EPS can be a viable option for constructing walls where there is a need to balance structural integrity and adequate insulation.","PeriodicalId":502935,"journal":{"name":"Journal of Composites Science","volume":"125 7","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-04-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Composites Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/jcs8040157","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This study investigates a sustainable coating method for modified expanded polystyrene (MEPS) beads to improve the thermal insulation of lightweight concrete intended for wall application. The method employed in this study is based on a novel coating technique that represents a significant advancement in modifying Expanded Polystyrene (EPS) beads for enhanced lightweight concrete. This study experimentally assessed the energy-saving capabilities of MEPS concrete in comparison to control groups of uncoated EPS beads and normal concrete by analysing early-stage temperature, thermal conductivity, specific heat capacity, heat flux, and thermal diffusivity. The thermal conductivity of MEPS concrete is approximately 40% lower than that of normal concrete, demonstrating its usefulness in enhancing insulation. The heat flux calculated for MEPS concrete is significantly reduced (approximately 35%), and it has a 20% lower specific heat capacity than ordinary concrete, indicating a reduction in energy transfer through the material and, thus, potential energy-efficiency benefits. Furthermore, the study discovered that all test objects have very low thermal diffusivity values (less than 0.5 × 10−6 m2/s), indicating a slower heat transport through the material. The sustainable coating method utilized fly ash-enhanced thermal efficiency and employed recycled materials, hence decreasing the environmental impact. MEPS concrete provides a practical option for creating sustainable and comfortable buildings through the promotion of energy-efficient wall construction. Concrete incorporating coated EPS can be a viable option for constructing walls where there is a need to balance structural integrity and adequate insulation.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
增强建筑业的可持续性:研究粉煤灰包裹膨胀聚苯乙烯轻质混凝土的热优势
本研究探讨了一种可持续的改性发泡聚苯乙烯(MEPS)微珠涂层方法,以提高轻质混凝土墙体的隔热性能。本研究采用的方法基于一种新颖的涂层技术,该技术在改性发泡聚苯乙烯(EPS)微珠用于增强轻质混凝土方面取得了重大进展。本研究通过分析早期温度、导热系数、比热容、热通量和热扩散率,评估了 MEPS 混凝土与未涂层 EPS 珠和普通混凝土对照组相比的节能能力。MEPS 混凝土的导热系数比普通混凝土低约 40%,这证明了它在增强隔热性能方面的作用。计算得出的 MEPS 混凝土热通量显著降低(约 35%),比热容比普通混凝土低 20%,这表明通过该材料传递的能量减少,因此具有潜在的节能效益。此外,研究还发现,所有测试对象的热扩散值都非常低(小于 0.5 × 10-6 m2/s),这表明通过材料的热传递速度较慢。可持续涂层方法利用粉煤灰提高了热效率,并采用了可回收材料,从而减少了对环境的影响。通过推广节能墙体建筑,MEPS 混凝土为创造可持续发展的舒适建筑提供了一个实用的选择。对于需要兼顾结构完整性和足够隔热性能的墙体建筑,含有涂层发泡聚苯乙烯的混凝土是一种可行的选择。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Effect of the Incorporation of Olive Tree Pruning Sawdust in the Production of Lightweight Mortars Properties of Composites Based on Polylactide Filled with Cork Filler Influence of Silica Nanoparticles on the Physical Properties of Random Polypropylene Analytical and Experimental Behaviour of GFRP-Reinforced Concrete Columns under Fire Loading Mechanical Characterization of Hybrid Steel Wire Mesh/Basalt/Epoxy Fiber-Reinforced Polymer Composite Laminates
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1