{"title":"A simple methodology for in situ study of microplastics’ aggregation","authors":"Gholamreza Bonyadinejad, Maryam Salehi","doi":"10.1002/clen.202300378","DOIUrl":null,"url":null,"abstract":"<p>Due to the critical impacts of microplastic (MP) aggregation on their fate, mobility, and bioavailability, this study developed a simple approach to examine their aggregation under varying water chemistry and MPs’ surface aging conditions. An accelerated photodegradation experiment was conducted for 6 weeks. The water chemistry conditions varied by altering pH, using natural organic matter (NOM), and conducting experiments in ultrapure water and synthetic stormwater. The surface chemistry analysis of photodegraded MPs revealed the formation of carbonyl and vinyl functional groups. Zeta potential measurements revealed a more negative surface charge for photodegraded MPs compared to new MPs. The aggregation kinetics of MPs were studied by comparing the number of MP clusters formed over time after intense dispersion in water. The results showed that the presence of NOMs reduces the aggregation tendency of new low-density polyethylene MPs due to enhanced steric hindrance and electrostatic repulsion. However, variations of pH and utilizing synthetic stormwater versus ultrapure water did not alter the aggregation kinetics of new MPs. The aggregation behavior of photodegraded MPs was significantly different from new MPs. A greater tendency for aggregation of photodegraded MPs was found in the stormwater compared to the ultrapure water. This study contributes to a better understanding of the transport and fate of MPs within the aqueous environment and their subsequent environmental risks.</p>","PeriodicalId":10306,"journal":{"name":"Clean-soil Air Water","volume":"52 6","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2024-04-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Clean-soil Air Water","FirstCategoryId":"93","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/clen.202300378","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Due to the critical impacts of microplastic (MP) aggregation on their fate, mobility, and bioavailability, this study developed a simple approach to examine their aggregation under varying water chemistry and MPs’ surface aging conditions. An accelerated photodegradation experiment was conducted for 6 weeks. The water chemistry conditions varied by altering pH, using natural organic matter (NOM), and conducting experiments in ultrapure water and synthetic stormwater. The surface chemistry analysis of photodegraded MPs revealed the formation of carbonyl and vinyl functional groups. Zeta potential measurements revealed a more negative surface charge for photodegraded MPs compared to new MPs. The aggregation kinetics of MPs were studied by comparing the number of MP clusters formed over time after intense dispersion in water. The results showed that the presence of NOMs reduces the aggregation tendency of new low-density polyethylene MPs due to enhanced steric hindrance and electrostatic repulsion. However, variations of pH and utilizing synthetic stormwater versus ultrapure water did not alter the aggregation kinetics of new MPs. The aggregation behavior of photodegraded MPs was significantly different from new MPs. A greater tendency for aggregation of photodegraded MPs was found in the stormwater compared to the ultrapure water. This study contributes to a better understanding of the transport and fate of MPs within the aqueous environment and their subsequent environmental risks.
期刊介绍:
CLEAN covers all aspects of Sustainability and Environmental Safety. The journal focuses on organ/human--environment interactions giving interdisciplinary insights on a broad range of topics including air pollution, waste management, the water cycle, and environmental conservation. With a 2019 Journal Impact Factor of 1.603 (Journal Citation Reports (Clarivate Analytics, 2020), the journal publishes an attractive mixture of peer-reviewed scientific reviews, research papers, and short communications.
Papers dealing with environmental sustainability issues from such fields as agriculture, biological sciences, energy, food sciences, geography, geology, meteorology, nutrition, soil and water sciences, etc., are welcome.