A simple methodology for in situ study of microplastics’ aggregation

IF 1.5 4区 环境科学与生态学 Q4 ENVIRONMENTAL SCIENCES Clean-soil Air Water Pub Date : 2024-04-21 DOI:10.1002/clen.202300378
Gholamreza Bonyadinejad, Maryam Salehi
{"title":"A simple methodology for in situ study of microplastics’ aggregation","authors":"Gholamreza Bonyadinejad,&nbsp;Maryam Salehi","doi":"10.1002/clen.202300378","DOIUrl":null,"url":null,"abstract":"<p>Due to the critical impacts of microplastic (MP) aggregation on their fate, mobility, and bioavailability, this study developed a simple approach to examine their aggregation under varying water chemistry and MPs’ surface aging conditions. An accelerated photodegradation experiment was conducted for 6 weeks. The water chemistry conditions varied by altering pH, using natural organic matter (NOM), and conducting experiments in ultrapure water and synthetic stormwater. The surface chemistry analysis of photodegraded MPs revealed the formation of carbonyl and vinyl functional groups. Zeta potential measurements revealed a more negative surface charge for photodegraded MPs compared to new MPs. The aggregation kinetics of MPs were studied by comparing the number of MP clusters formed over time after intense dispersion in water. The results showed that the presence of NOMs reduces the aggregation tendency of new low-density polyethylene MPs due to enhanced steric hindrance and electrostatic repulsion. However, variations of pH and utilizing synthetic stormwater versus ultrapure water did not alter the aggregation kinetics of new MPs. The aggregation behavior of photodegraded MPs was significantly different from new MPs. A greater tendency for aggregation of photodegraded MPs was found in the stormwater compared to the ultrapure water. This study contributes to a better understanding of the transport and fate of MPs within the aqueous environment and their subsequent environmental risks.</p>","PeriodicalId":10306,"journal":{"name":"Clean-soil Air Water","volume":"52 6","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2024-04-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Clean-soil Air Water","FirstCategoryId":"93","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/clen.202300378","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Due to the critical impacts of microplastic (MP) aggregation on their fate, mobility, and bioavailability, this study developed a simple approach to examine their aggregation under varying water chemistry and MPs’ surface aging conditions. An accelerated photodegradation experiment was conducted for 6 weeks. The water chemistry conditions varied by altering pH, using natural organic matter (NOM), and conducting experiments in ultrapure water and synthetic stormwater. The surface chemistry analysis of photodegraded MPs revealed the formation of carbonyl and vinyl functional groups. Zeta potential measurements revealed a more negative surface charge for photodegraded MPs compared to new MPs. The aggregation kinetics of MPs were studied by comparing the number of MP clusters formed over time after intense dispersion in water. The results showed that the presence of NOMs reduces the aggregation tendency of new low-density polyethylene MPs due to enhanced steric hindrance and electrostatic repulsion. However, variations of pH and utilizing synthetic stormwater versus ultrapure water did not alter the aggregation kinetics of new MPs. The aggregation behavior of photodegraded MPs was significantly different from new MPs. A greater tendency for aggregation of photodegraded MPs was found in the stormwater compared to the ultrapure water. This study contributes to a better understanding of the transport and fate of MPs within the aqueous environment and their subsequent environmental risks.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
现场研究微塑料聚集的简单方法
由于微塑料(MP)的聚集对其归宿、流动性和生物利用率有着至关重要的影响,本研究开发了一种简单的方法来检测微塑料在不同水化学和微塑料表面老化条件下的聚集情况。进行了为期 6 周的加速光降解实验。通过改变 pH 值、使用天然有机物(NOM)以及在超纯水和合成雨水中进行实验,水化学条件发生了变化。光降解 MPs 的表面化学分析显示形成了羰基和乙烯基官能团。Zeta 电位测量显示,与新的 MPs 相比,光降解 MPs 的表面电荷更负。通过比较在水中强烈分散后随时间推移形成的 MP 簇的数量,研究了 MP 的聚集动力学。结果表明,由于增强了立体阻碍和静电排斥,NOMs 的存在降低了新型低密度聚乙烯 MP 的聚集趋势。然而,pH 值的变化以及使用合成雨水和超纯水并不会改变新型 MP 的聚集动力学。光降解 MPs 的聚集行为与新 MPs 有明显不同。与超纯水相比,在雨水中发现光降解 MPs 的聚集趋势更大。这项研究有助于人们更好地了解 MPs 在水环境中的迁移和归宿及其后续环境风险。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Clean-soil Air Water
Clean-soil Air Water 环境科学-海洋与淡水生物学
CiteScore
2.80
自引率
5.90%
发文量
88
审稿时长
3.6 months
期刊介绍: CLEAN covers all aspects of Sustainability and Environmental Safety. The journal focuses on organ/human--environment interactions giving interdisciplinary insights on a broad range of topics including air pollution, waste management, the water cycle, and environmental conservation. With a 2019 Journal Impact Factor of 1.603 (Journal Citation Reports (Clarivate Analytics, 2020), the journal publishes an attractive mixture of peer-reviewed scientific reviews, research papers, and short communications. Papers dealing with environmental sustainability issues from such fields as agriculture, biological sciences, energy, food sciences, geography, geology, meteorology, nutrition, soil and water sciences, etc., are welcome.
期刊最新文献
Issue Information: Clean Soil Air Water. 12/2024 Holistic Management of Wastewater Pollution Through Biological Treatment: A Sustainable Future Anaerobic Naphthalene Biotransformation Coupled to Sulfate Reduction Commercial Blue Textile Dye Decolorization Using Aspergillus oryzae RH1 Isolated From Fermented Miso Issue Information: Clean Soil Air Water. 11/2024
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1