首页 > 最新文献

Clean-soil Air Water最新文献

英文 中文
Issue Information: Clean Soil Air Water. 12/2024 问题信息:清洁土壤、空气和水。12/2024
IF 1.5 4区 环境科学与生态学 Q4 ENVIRONMENTAL SCIENCES Pub Date : 2024-12-17 DOI: 10.1002/clen.202470121
{"title":"Issue Information: Clean Soil Air Water. 12/2024","authors":"","doi":"10.1002/clen.202470121","DOIUrl":"https://doi.org/10.1002/clen.202470121","url":null,"abstract":"","PeriodicalId":10306,"journal":{"name":"Clean-soil Air Water","volume":"52 12","pages":""},"PeriodicalIF":1.5,"publicationDate":"2024-12-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/clen.202470121","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142868709","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Holistic Management of Wastewater Pollution Through Biological Treatment: A Sustainable Future 通过生物处理全面管理废水污染:可持续的未来
IF 1.5 4区 环境科学与生态学 Q4 ENVIRONMENTAL SCIENCES Pub Date : 2024-12-10 DOI: 10.1002/clen.202400059
Bidisha Chatterjee, Stootee Baruah, Deepsikha Chatterjee, Sharadia Dey, Arup Kumar Mitra

The global population is increasing at an elevated speed leading to the expansion of urbanization at the cost of environmental degradation, especially aquatic ecosystem pollution due to the enhanced discharge of wastewater. These aquatic ecosystems are primarily polluted by potentially toxic elements, polyaromatic hydrocarbons, dyes, plastics, pesticides, organic compounds, and molecules present in fertilizers, household wastes, industrial effluents, and sewage discharge. The enhanced deterioration of water bodies has led to the search for natural solutions for a sustainable ecosystem. The utilization of the natural microbial flora of the aquatic ecosystem for remediation, more popularly known as bioremediation, is of global interest because of its cost-effectiveness and eco-friendly approach. Bioremediation can be broadly categorized into bacterial remediation, mycoremediation, and phytoremediation and is more commonly studied for soil pollution. However, in this review, we discuss bioremediation techniques and mechanisms with respect to water pollution. Aquatic microbes utilize the toxic components present in wastewater as a substrate for their own metabolism by acting as a biologically active methylator or by chemical alteration of the toxicants into less harmful products, thus degrading the toxic environmental pollutants into nontoxic products thereby eliminating their detrimental effects. Microalgae used in phytoremediation also help to elevate the dissolved oxygen level in the aquatic ecosystem thereby reducing the probability of eutrophication. This review represents the study of diverse pollutants remediation and a method involving microbial consortia in a bioreactor for optimum efficacy at minimum cost.

{"title":"Holistic Management of Wastewater Pollution Through Biological Treatment: A Sustainable Future","authors":"Bidisha Chatterjee,&nbsp;Stootee Baruah,&nbsp;Deepsikha Chatterjee,&nbsp;Sharadia Dey,&nbsp;Arup Kumar Mitra","doi":"10.1002/clen.202400059","DOIUrl":"https://doi.org/10.1002/clen.202400059","url":null,"abstract":"<div>\u0000 \u0000 <p>The global population is increasing at an elevated speed leading to the expansion of urbanization at the cost of environmental degradation, especially aquatic ecosystem pollution due to the enhanced discharge of wastewater. These aquatic ecosystems are primarily polluted by potentially toxic elements, polyaromatic hydrocarbons, dyes, plastics, pesticides, organic compounds, and molecules present in fertilizers, household wastes, industrial effluents, and sewage discharge. The enhanced deterioration of water bodies has led to the search for natural solutions for a sustainable ecosystem. The utilization of the natural microbial flora of the aquatic ecosystem for remediation, more popularly known as bioremediation, is of global interest because of its cost-effectiveness and eco-friendly approach. Bioremediation can be broadly categorized into bacterial remediation, mycoremediation, and phytoremediation and is more commonly studied for soil pollution. However, in this review, we discuss bioremediation techniques and mechanisms with respect to water pollution. Aquatic microbes utilize the toxic components present in wastewater as a substrate for their own metabolism by acting as a biologically active methylator or by chemical alteration of the toxicants into less harmful products, thus degrading the toxic environmental pollutants into nontoxic products thereby eliminating their detrimental effects. Microalgae used in phytoremediation also help to elevate the dissolved oxygen level in the aquatic ecosystem thereby reducing the probability of eutrophication. This review represents the study of diverse pollutants remediation and a method involving microbial consortia in a bioreactor for optimum efficacy at minimum cost.</p>\u0000 </div>","PeriodicalId":10306,"journal":{"name":"Clean-soil Air Water","volume":"52 12","pages":""},"PeriodicalIF":1.5,"publicationDate":"2024-12-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142868376","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Anaerobic Naphthalene Biotransformation Coupled to Sulfate Reduction
IF 1.5 4区 环境科学与生态学 Q4 ENVIRONMENTAL SCIENCES Pub Date : 2024-11-21 DOI: 10.1002/clen.202400049
Aparna Yadu, Biju Prava Sahariah, Jayapal Anandkumar

Polycyclic aromatic hydrocarbons (PAHs) are a diverse group of hazardous and toxic pollutants widely distributed in the environment. The anaerobic degradation is a promising technique for the removal of recalcitrant aromatic hydrocarbons from waste stream. In this study, anaerobic degradation of naphthalene (NAP) was investigated by using cow dung-enriched mixed microbial consortia with varying NAP and sulfate concentrations. The maximum removal of NAP (99.8%) and sulfate (68%) was achieved while varying the sulfate concentration from 50 to 500 mg/L in 500 mg/L NAP influent concentration. 41.9 mg/L of sulfate was generated during this study. Similarly, when NAP concentration was varied from 100 to 1000 mg/L, 84% of chemical oxygen demand (COD), 74% of sulfate, and 92% of NAP were observed at constant sulfate concentration of 250 mg/L. This result reveals that sulfate concentration had no significant effect on NAP degradation. NAP mineralization was evidenced by the formation of sulfide and production of metabolites with decreasing NAP concentration. Gas chromatography–mass spectrometry (GC–MS) confirmed the formation of metabolites like naphthol and 1,2-dihydroxynaphthalene due to monooxygenation at C-1 as part of the metabolic pathway. The rate of NAP, COD, and sulfate removal followed the first-order kinetics with high regression coefficients while varying the influent NAP concentrations.

多环芳烃(PAHs)是广泛分布于环境中的多种有毒有害污染物。厌氧降解是从废物流中去除难降解芳香烃的一种有前途的技术。本研究利用牛粪富集的混合微生物群,在不同的 NAP 和硫酸盐浓度下,对萘 (NAP) 的厌氧降解进行了研究。在 500 mg/L NAP 进水浓度中,当硫酸盐浓度从 50 mg/L 到 500 mg/L 变化时,NAP(99.8%)和硫酸盐(68%)的去除率最高。在这项研究中产生了 41.9 毫克/升的硫酸盐。同样,当 NAP 浓度从 100 mg/L 变化到 1000 mg/L 时,在硫酸盐浓度保持 250 mg/L 不变的情况下,化学需氧量(COD)为 84%,硫酸盐为 74%,NAP 为 92%。这一结果表明,硫酸盐浓度对 NAP 降解没有显著影响。随着 NAP 浓度的降低,硫化物的形成和代谢物的产生证明了 NAP 矿化。气相色谱-质谱法(GC-MS)证实,代谢途径的一部分是在 C-1 处进行单氧合反应,从而形成萘酚和 1,2-二羟基萘等代谢物。在改变进水 NAP 浓度时,NAP、COD 和硫酸盐的去除率遵循一阶动力学,并具有较高的回归系数。
{"title":"Anaerobic Naphthalene Biotransformation Coupled to Sulfate Reduction","authors":"Aparna Yadu,&nbsp;Biju Prava Sahariah,&nbsp;Jayapal Anandkumar","doi":"10.1002/clen.202400049","DOIUrl":"https://doi.org/10.1002/clen.202400049","url":null,"abstract":"<div>\u0000 \u0000 <p>Polycyclic aromatic hydrocarbons (PAHs) are a diverse group of hazardous and toxic pollutants widely distributed in the environment. The anaerobic degradation is a promising technique for the removal of recalcitrant aromatic hydrocarbons from waste stream. In this study, anaerobic degradation of naphthalene (NAP) was investigated by using cow dung-enriched mixed microbial consortia with varying NAP and sulfate concentrations. The maximum removal of NAP (99.8%) and sulfate (68%) was achieved while varying the sulfate concentration from 50 to 500 mg/L in 500 mg/L NAP influent concentration. 41.9 mg/L of sulfate was generated during this study. Similarly, when NAP concentration was varied from 100 to 1000 mg/L, 84% of chemical oxygen demand (COD), 74% of sulfate, and 92% of NAP were observed at constant sulfate concentration of 250 mg/L. This result reveals that sulfate concentration had no significant effect on NAP degradation. NAP mineralization was evidenced by the formation of sulfide and production of metabolites with decreasing NAP concentration. Gas chromatography–mass spectrometry (GC–MS) confirmed the formation of metabolites like naphthol and 1,2-dihydroxynaphthalene due to monooxygenation at C-1 as part of the metabolic pathway. The rate of NAP, COD, and sulfate removal followed the first-order kinetics with high regression coefficients while varying the influent NAP concentrations.</p>\u0000 </div>","PeriodicalId":10306,"journal":{"name":"Clean-soil Air Water","volume":"52 12","pages":""},"PeriodicalIF":1.5,"publicationDate":"2024-11-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142868832","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Commercial Blue Textile Dye Decolorization Using Aspergillus oryzae RH1 Isolated From Fermented Miso
IF 1.5 4区 环境科学与生态学 Q4 ENVIRONMENTAL SCIENCES Pub Date : 2024-11-19 DOI: 10.1002/clen.202300455
Ricky Handersen, Joan Christie Wijaya, Hans Victor, Jonathan Suciono Purnomo, Melanie Cornelia, Bambang Kiranadi, Eduwin Pakpahan, Reinhard Pinontoan

The improper treatment of effluents from the textile industry is associated with severe health and environmental hazards. This study aimed to isolate and characterize miso-paste fungi that can decolorize commercial blue textile dyes (identified as Reactive Violet 5 [RV5] through spectral comparison). Response surface methodology (RSM) was employed to determine the optimal decolorization conditions, whereas molecular docking was performed to propose an enzymatic degradation mechanism. One colony, displaying the typical morphological characteristics of Aspergillus oryzae common in miso-paste starters, exhibited high decolorization potential for RV5. Validation of the RSM analysis using whole fungus A. oryzae RH1 revealed a decolorization performance of 92.33% under the following optimized conditions: 33°C, pH 6.2, dye concentration of 200 ppm, and incubation period of 6 days. The optimal conditions for dye degradation via enzymatic catalysis, with peroxidase as the enzyme, were 51°C and pH 3.0, resulting in a decolorization performance of 48.95% after 60 min of incubation. Molecular docking analysis suggested that the DyP-type peroxidase produced by A. oryzae RH1 can oxidize the azo bond, which is the chromophore group of RV5. In addition, biosorption was found to play a significant role in the decolorization of A. oryzae RH1. Altogether, these findings lay the basis for the use of A. oryzae RH1 in bioreactor systems for textile wastewater treatment.

{"title":"Commercial Blue Textile Dye Decolorization Using Aspergillus oryzae RH1 Isolated From Fermented Miso","authors":"Ricky Handersen,&nbsp;Joan Christie Wijaya,&nbsp;Hans Victor,&nbsp;Jonathan Suciono Purnomo,&nbsp;Melanie Cornelia,&nbsp;Bambang Kiranadi,&nbsp;Eduwin Pakpahan,&nbsp;Reinhard Pinontoan","doi":"10.1002/clen.202300455","DOIUrl":"https://doi.org/10.1002/clen.202300455","url":null,"abstract":"<p>The improper treatment of effluents from the textile industry is associated with severe health and environmental hazards. This study aimed to isolate and characterize miso-paste fungi that can decolorize commercial blue textile dyes (identified as Reactive Violet 5 [RV5] through spectral comparison). Response surface methodology (RSM) was employed to determine the optimal decolorization conditions, whereas molecular docking was performed to propose an enzymatic degradation mechanism. One colony, displaying the typical morphological characteristics of <i>Aspergillus oryzae</i> common in miso-paste starters, exhibited high decolorization potential for RV5. Validation of the RSM analysis using whole fungus <i>A. oryzae</i> RH1 revealed a decolorization performance of 92.33% under the following optimized conditions: 33°C, pH 6.2, dye concentration of 200 ppm, and incubation period of 6 days. The optimal conditions for dye degradation via enzymatic catalysis, with peroxidase as the enzyme, were 51°C and pH 3.0, resulting in a decolorization performance of 48.95% after 60 min of incubation. Molecular docking analysis suggested that the DyP-type peroxidase produced by <i>A. oryzae</i> RH1 can oxidize the azo bond, which is the chromophore group of RV5. In addition, biosorption was found to play a significant role in the decolorization of <i>A. oryzae</i> RH1. Altogether, these findings lay the basis for the use of <i>A. oryzae</i> RH1 in bioreactor systems for textile wastewater treatment.</p>","PeriodicalId":10306,"journal":{"name":"Clean-soil Air Water","volume":"52 12","pages":""},"PeriodicalIF":1.5,"publicationDate":"2024-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142868626","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Issue Information: Clean Soil Air Water. 11/2024 问题信息:清洁土壤、空气和水。11/2024
IF 1.5 4区 环境科学与生态学 Q4 ENVIRONMENTAL SCIENCES Pub Date : 2024-11-16 DOI: 10.1002/clen.202470111
{"title":"Issue Information: Clean Soil Air Water. 11/2024","authors":"","doi":"10.1002/clen.202470111","DOIUrl":"https://doi.org/10.1002/clen.202470111","url":null,"abstract":"","PeriodicalId":10306,"journal":{"name":"Clean-soil Air Water","volume":"52 11","pages":""},"PeriodicalIF":1.5,"publicationDate":"2024-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/clen.202470111","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142665941","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A Comprehensive Review on the Biofilm-Mediated Removal of Nitrogen and Chemical Oxygen Demand From Different Wastewater Sources
IF 1.5 4区 环境科学与生态学 Q4 ENVIRONMENTAL SCIENCES Pub Date : 2024-11-07 DOI: 10.1002/clen.202300282
Modhurima Misra, Pranati Das, Anshita Mehra, Soham Chattopadhyay

Discharging effluents with high chemical oxygen demand (COD) and nitrogen content into the environment threatens human and aquatic life. An increase in nitrogen load results in depletion of dissolved oxygen (DO), eutrophication, ecological stress, and biodiversity loss. Intake of water containing excess nitrate can cause different diseases. Conventional physicochemical nitrogen removal techniques are expensive and also generate secondary pollutants. In contrast, biological methods offer effective and economical outcomes with global acceptance. Biofilm-based techniques have the advantages of low space requirement, resistance toward toxic shocks, and absence of sludge backflow. The carriers used in biofilm reactors allow the growth of heterogeneous microbial consortia, which can simultaneously remove COD, nitrogenous compounds, and phosphates. This review aims to summarize the outcomes of the individual lab-scale research in this area, critically analyze the scientific findings, and understand the research gap. Conventional nitrification–denitrification and anammox have often been replaced by more efficient approaches such as simultaneous nitrification–denitrification, partial nitrification–denitrification, partial nitritation and anammox, and simultaneous partial nitrification, anammox, and denitrification. Multistage moving bed biofilm reactors have been specially designed with step feeding for complete nitrogen removal. Through anammox in a sequencing batch reactor, a high rate of denitrification could be obtained, whereas simultaneous nitrification–denitrification using a membrane bioreactor resulted in almost complete removal of nitrogen. We expect that this review will provide the direction for designing experiments on enhanced removal of nitrogen and COD from different wastewater sources using microbial biofilms.

{"title":"A Comprehensive Review on the Biofilm-Mediated Removal of Nitrogen and Chemical Oxygen Demand From Different Wastewater Sources","authors":"Modhurima Misra,&nbsp;Pranati Das,&nbsp;Anshita Mehra,&nbsp;Soham Chattopadhyay","doi":"10.1002/clen.202300282","DOIUrl":"https://doi.org/10.1002/clen.202300282","url":null,"abstract":"<div>\u0000 \u0000 <p>Discharging effluents with high chemical oxygen demand (COD) and nitrogen content into the environment threatens human and aquatic life. An increase in nitrogen load results in depletion of dissolved oxygen (DO), eutrophication, ecological stress, and biodiversity loss. Intake of water containing excess nitrate can cause different diseases. Conventional physicochemical nitrogen removal techniques are expensive and also generate secondary pollutants. In contrast, biological methods offer effective and economical outcomes with global acceptance. Biofilm-based techniques have the advantages of low space requirement, resistance toward toxic shocks, and absence of sludge backflow. The carriers used in biofilm reactors allow the growth of heterogeneous microbial consortia, which can simultaneously remove COD, nitrogenous compounds, and phosphates. This review aims to summarize the outcomes of the individual lab-scale research in this area, critically analyze the scientific findings, and understand the research gap. Conventional nitrification–denitrification and anammox have often been replaced by more efficient approaches such as simultaneous nitrification–denitrification, partial nitrification–denitrification, partial nitritation and anammox, and simultaneous partial nitrification, anammox, and denitrification. Multistage moving bed biofilm reactors have been specially designed with step feeding for complete nitrogen removal. Through anammox in a sequencing batch reactor, a high rate of denitrification could be obtained, whereas simultaneous nitrification–denitrification using a membrane bioreactor resulted in almost complete removal of nitrogen. We expect that this review will provide the direction for designing experiments on enhanced removal of nitrogen and COD from different wastewater sources using microbial biofilms.</p>\u0000 </div>","PeriodicalId":10306,"journal":{"name":"Clean-soil Air Water","volume":"52 12","pages":""},"PeriodicalIF":1.5,"publicationDate":"2024-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142867969","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Effect of Intercropping Soybean on the Diversity of the Rhizosphere Soil Arbuscular Mycorrhizal Fungi Communities in Wheat Field 间作大豆对小麦田根瘤土壤丛枝菌根真菌群落多样性的影响
IF 1.5 4区 环境科学与生态学 Q4 ENVIRONMENTAL SCIENCES Pub Date : 2024-10-25 DOI: 10.1002/clen.202400348
Lu Xingli

CLEAN—Soil, Air, Water, 2022, 50 (6). 2100014. http://doi.org/10.1002/clen.202100014.

In the initially published article, the units of the crop yield in Table 5 were calculated in jin mu−1, not kg hm−2 due to my careless. 1 jin mu−1 = 500 g/666.67 m2.

In the published article, Table 5 is given as:

The new version of the table is:

Further, on Page 4, Section 2.5 “Effects of Different Intercropping Models on Crop Yield,” the current sentence:

“The group yield was highest under the RSW model (1515.97 kg ha−1).” should be given as:

“The group yield was highest under the RSW model (11369.76 kg ha−1).”

In addition, the study was supported by National Natural Science Foundation of China (31860361), The fourth lifting project of Ningxia young scientific and technological talents (TJGC2019075), National Natural Science Foundation of Ningxia (2019AAC03055).

The calculation error does not affect the results or conclusions of the manuscript. The author apologizes for any inconvenience or misunderstanding that this error may have caused.

CLEAN-Soil, Air, Water, 2022, 50 (6).2100014. http://doi.org/10.1002/clen.202100014.In 在最初发表的文章中,由于我的粗心,表 5 中作物产量的计算单位是斤亩-1,而不是 kg hm-2。1斤亩产=500克/666.67平方米。在发表的文章中,表 5 的单位为:新版表格为:此外,在第 4 页第 2.5 节 "不同间作模式对作物产量的影响 "中,目前的句子:"在 RSW 模式下,群体产量最高(1515.97 千克公顷-1)。"应改为:"在 RSW 模式下,群体产量最高(11369.76 kg ha-1)。"此外,该研究得到了国家自然科学基金(31860361)、宁夏第四批青年科技人才提升工程(TJGC2019075)、宁夏国家自然科学基金(2019AAC03055)的资助,计算错误不影响稿件的结果和结论。该计算错误不影响稿件的结果和结论,如因此造成不便或误解,作者深表歉意。
{"title":"Effect of Intercropping Soybean on the Diversity of the Rhizosphere Soil Arbuscular Mycorrhizal Fungi Communities in Wheat Field","authors":"Lu Xingli","doi":"10.1002/clen.202400348","DOIUrl":"https://doi.org/10.1002/clen.202400348","url":null,"abstract":"<p>CLEAN—Soil, Air, Water, 2022, 50 (6). 2100014. http://doi.org/10.1002/clen.202100014.</p><p>In the initially published article, the units of the crop yield in Table 5 were calculated in jin mu<sup>−1</sup>, not kg hm<sup>−2</sup> due to my careless. 1 jin mu<sup>−1</sup> = 500 g/666.67 m<sup>2</sup>.</p><p>In the published article, Table 5 is given as:</p><p>The new version of the table is:</p><p>Further, on Page 4, Section 2.5 “Effects of Different Intercropping Models on Crop Yield,” the current sentence:</p><p>“The group yield was highest under the RSW model (1515.97 kg ha<sup>−1</sup>).” should be given as:</p><p>“The group yield was highest under the RSW model (11369.76 kg ha<sup>−1</sup>).”</p><p>In addition, the study was supported by National Natural Science Foundation of China (31860361), The fourth lifting project of Ningxia young scientific and technological talents (TJGC2019075), National Natural Science Foundation of Ningxia (2019AAC03055).</p><p>The calculation error does not affect the results or conclusions of the manuscript. The author apologizes for any inconvenience or misunderstanding that this error may have caused.</p>","PeriodicalId":10306,"journal":{"name":"Clean-soil Air Water","volume":"52 11","pages":""},"PeriodicalIF":1.5,"publicationDate":"2024-10-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/clen.202400348","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142666090","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Short-Term Benefits of Tillage and Agronomic Biofortification for Soybean–Wheat Cropping in Central India 印度中部大豆-小麦作物耕作和农艺生物强化的短期效益
IF 1.5 4区 环境科学与生态学 Q4 ENVIRONMENTAL SCIENCES Pub Date : 2024-10-12 DOI: 10.1002/clen.202300300
Raghavendra Nargund, Rakesh Kumar Verma, Aketi Ramesh, Mahaveer Prasad Sharma, Hanamant Mudakappa Halli, Prabhu Govindasamy

In a changing climate, conservation tillage and agronomic biofortification are essential for enhancing crop yield, nutritional security, carbon stocks, and soil quality. Consequently, a field study was conducted in central India to assess the short-term (4 years) effects of crop establishment techniques (CETs) and agronomic biofortification methods (ABMs) on soil health indicators, grain yield, and quality in the soybean–wheat cropping system. The experiment followed a split-plot design with two CETs in the main plots (permanent broad bed furrow, PBBF, and conventional tillage, CT) and eight ABMs, each with three replications. The results indicated that PBBF and ABMs (seed inoculation with the microbial strains MDSR 14 + MDSR 34, and soil and foliar application of Zn+Fe) improved soil carbon stock (by 49.6% and 52.4%), available nitrogen, phosphorus, potassium, available Zn (by 30.0%), and Fe (by 21.9%) after the fourth year of the study. Similarly, PBBF and microbial inoculation increased soil enzyme activities (dehydrogenase, acid phosphatase, and β-glucosidase), substrate-induced respiration, and microbial biomass carbon content. As a result, a higher soybean equivalent yield (5.59% higher in PBBF and 14.2% higher with foliar spray of Zn+Fe) and seed quality attributes (crude protein yield, grain Zn, and Fe) were observed in PBBF and the foliar spray of Zn and Fe treatments compared to CT and control, respectively. Overall, adopting the short-term PBBF system, microbial inoculation, and soil and foliar application of Zn and Fe improved rhizosphere biochemical properties, yield, and seed quality in the soybean–wheat system.

在气候不断变化的情况下,保护性耕作和农艺生物强化对提高作物产量、营养安全、碳储量和土壤质量至关重要。因此,在印度中部开展了一项田间研究,以评估作物种植技术(CET)和农艺生物强化方法(ABM)对大豆-小麦种植系统中土壤健康指标、谷物产量和质量的短期(4 年)影响。试验采用分小区设计,在主小区采用两种 CET(永久性宽床沟播(PBBF)和常规耕作(CT))和八种农艺生物强化方法,每种方法有三次重复。结果表明,PBBF 和 ABMs(种子接种微生物菌株 MDSR 14 + MDSR 34,土壤和叶面施肥锌+铁)在研究第四年后改善了土壤碳储量(49.6% 和 52.4%)、可利用氮、磷、钾、可利用锌(30.0%)和铁(21.9%)。同样,PBBF 和微生物接种提高了土壤酶活性(脱氢酶、酸性磷酸酶和 β-葡萄糖苷酶)、底物诱导呼吸和微生物生物量碳含量。因此,与 CT 和对照相比,PBBF 和叶面喷施锌和铁处理的大豆当量产量(PBBF 高 5.59%,叶面喷施锌+铁高 14.2%)和种子质量属性(粗蛋白产量、籽粒锌和铁)分别更高。总之,采用短期 PBBF 系统、微生物接种、土壤和叶面喷施锌和铁改善了大豆-小麦系统的根瘤生化特性、产量和种子质量。
{"title":"Short-Term Benefits of Tillage and Agronomic Biofortification for Soybean–Wheat Cropping in Central India","authors":"Raghavendra Nargund,&nbsp;Rakesh Kumar Verma,&nbsp;Aketi Ramesh,&nbsp;Mahaveer Prasad Sharma,&nbsp;Hanamant Mudakappa Halli,&nbsp;Prabhu Govindasamy","doi":"10.1002/clen.202300300","DOIUrl":"https://doi.org/10.1002/clen.202300300","url":null,"abstract":"<div>\u0000 \u0000 <p>In a changing climate, conservation tillage and agronomic biofortification are essential for enhancing crop yield, nutritional security, carbon stocks, and soil quality. Consequently, a field study was conducted in central India to assess the short-term (4 years) effects of crop establishment techniques (CETs) and agronomic biofortification methods (ABMs) on soil health indicators, grain yield, and quality in the soybean–wheat cropping system. The experiment followed a split-plot design with two CETs in the main plots (permanent broad bed furrow, PBBF, and conventional tillage, CT) and eight ABMs, each with three replications. The results indicated that PBBF and ABMs (seed inoculation with the microbial strains MDSR 14 + MDSR 34, and soil and foliar application of Zn+Fe) improved soil carbon stock (by 49.6% and 52.4%), available nitrogen, phosphorus, potassium, available Zn (by 30.0%), and Fe (by 21.9%) after the fourth year of the study. Similarly, PBBF and microbial inoculation increased soil enzyme activities (dehydrogenase, acid phosphatase, and β-glucosidase), substrate-induced respiration, and microbial biomass carbon content. As a result, a higher soybean equivalent yield (5.59% higher in PBBF and 14.2% higher with foliar spray of Zn+Fe) and seed quality attributes (crude protein yield, grain Zn, and Fe) were observed in PBBF and the foliar spray of Zn and Fe treatments compared to CT and control, respectively. Overall, adopting the short-term PBBF system, microbial inoculation, and soil and foliar application of Zn and Fe improved rhizosphere biochemical properties, yield, and seed quality in the soybean–wheat system.</p>\u0000 </div>","PeriodicalId":10306,"journal":{"name":"Clean-soil Air Water","volume":"52 11","pages":""},"PeriodicalIF":1.5,"publicationDate":"2024-10-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142665836","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Issue Information: Clean Soil Air Water. 10/2024 问题信息:清洁土壤、空气和水。10/2024
IF 1.5 4区 环境科学与生态学 Q4 ENVIRONMENTAL SCIENCES Pub Date : 2024-10-11 DOI: 10.1002/clen.202470101
{"title":"Issue Information: Clean Soil Air Water. 10/2024","authors":"","doi":"10.1002/clen.202470101","DOIUrl":"https://doi.org/10.1002/clen.202470101","url":null,"abstract":"","PeriodicalId":10306,"journal":{"name":"Clean-soil Air Water","volume":"52 10","pages":""},"PeriodicalIF":1.5,"publicationDate":"2024-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/clen.202470101","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142435206","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Microbial Degradation of Polyester Microfibers Using Indigenously Isolated Bacterial Strain Exiguobacterium Sp. 利用本土分离的细菌菌株 Exiguobacterium Sp.
IF 1.5 4区 环境科学与生态学 Q4 ENVIRONMENTAL SCIENCES Pub Date : 2024-10-09 DOI: 10.1002/clen.202300343
Sunanda Mishra, Debasis Dash, Alok Prasad Das

Synthetic microfibers are emerging environmental microplastic pollutants released from different industrial and domestic sources. The present investigation describes the isolation of potential bacterial strains from microplastic-contaminated sites of Bhubaneswar city of Odisha, India. Four morphologically distinct bacterial strains were isolated using 2% polyethylene glycol (PEG) supplemented nutrient agar (NA) medium and were screened for their polymer tolerance ability by growing them on 2%–8% PEG. A single microorganism capable of growing on 8% PEG was selected for biodegradation experiment. Through 16S rRNA sequencing, the selected bacterial strain was identified as Exiguobacterium sp. with gene bank accession number ON318396. The microbial strain's microfiber biodegradation ability was assessed in a laboratory setting over a period of 28 ± 2 days, utilizing optimized conditions with an initial pH of 7, 2 mL inoculum volume, an incubation temperature of 30°C ± 2°C, and 150 rpm, using 2 g of polyester microfiber. In optimum conditions, the weight loss of the treated sample with the selected microbial strain was 19.2%. The polyester degradation was confirmed through scanning electron microscopic images viewing the degradation of the polyester microfiber surfaces. Variation in functional groups confirmed through Fourier transform infrared spectrophotometry. Detection of carbonyl (C═O) group stretching band at 1711 cm−1 through ATR-FTIR analysis in the treated sample confirmed the polymer biodegradation. The potential isolate can efficiently degrade polyester and, in the future, can be employed as a promising solution for the sustainable treatment of synthetic microfiber pollution.

{"title":"Microbial Degradation of Polyester Microfibers Using Indigenously Isolated Bacterial Strain Exiguobacterium Sp.","authors":"Sunanda Mishra,&nbsp;Debasis Dash,&nbsp;Alok Prasad Das","doi":"10.1002/clen.202300343","DOIUrl":"https://doi.org/10.1002/clen.202300343","url":null,"abstract":"<div>\u0000 \u0000 <p>Synthetic microfibers are emerging environmental microplastic pollutants released from different industrial and domestic sources. The present investigation describes the isolation of potential bacterial strains from microplastic-contaminated sites of Bhubaneswar city of Odisha, India. Four morphologically distinct bacterial strains were isolated using 2% polyethylene glycol (PEG) supplemented nutrient agar (NA) medium and were screened for their polymer tolerance ability by growing them on 2%–8% PEG. A single microorganism capable of growing on 8% PEG was selected for biodegradation experiment. Through 16S rRNA sequencing, the selected bacterial strain was identified as <i>Exiguobacterium</i> sp. with gene bank accession number ON318396. The microbial strain's microfiber biodegradation ability was assessed in a laboratory setting over a period of 28 ± 2 days, utilizing optimized conditions with an initial pH of 7, 2 mL inoculum volume, an incubation temperature of 30°C ± 2°C, and 150 rpm, using 2 g of polyester microfiber. In optimum conditions, the weight loss of the treated sample with the selected microbial strain was 19.2%. The polyester degradation was confirmed through scanning electron microscopic images viewing the degradation of the polyester microfiber surfaces. Variation in functional groups confirmed through Fourier transform infrared spectrophotometry. Detection of carbonyl (C═O) group stretching band at 1711 cm<sup>−1</sup> through ATR-FTIR analysis in the treated sample confirmed the polymer biodegradation. The potential isolate can efficiently degrade polyester and, in the future, can be employed as a promising solution for the sustainable treatment of synthetic microfiber pollution.</p>\u0000 </div>","PeriodicalId":10306,"journal":{"name":"Clean-soil Air Water","volume":"52 12","pages":""},"PeriodicalIF":1.5,"publicationDate":"2024-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142868331","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Clean-soil Air Water
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1