{"title":"Unravelling the Fractal Complexity of Temperature Datasets across Indian Mainland","authors":"Adarsh Sankaran, Thomas Plocoste, Arathy Nair Geetha Raveendran Nair, Meera Geetha Mohan","doi":"10.3390/fractalfract8040241","DOIUrl":null,"url":null,"abstract":"Studying atmospheric temperature characteristics is crucial under climate change, as it helps us to understand the changing patterns in temperature that have significant implications for the environment, ecosystems, and human well-being. This study presents the comprehensive analysis of the spatiotemporal variability of scaling behavior of daily temperature series across the whole Indian mainland, using a Multifractal Detrended Fluctuation Analysis (MFDFA). The analysis considered 1° × 1° datasets of maximum temperature (Tmax), minimum temperature (Tmin), mean temperature (Tmean), and diurnal temperature range (DTR) (TDTR = Tmax − Tmin) from 1951 to 2016 to compare their scaling behavior for the first time. Our results indicate that the Tmin series exhibits the highest persistence (with the Hurst exponent ranging from 0.849 to unity, and a mean of 0.971), and all four-temperature series display long-term persistence and multifractal characteristics. The variability of the multifractal characteristics is less significant in North–Central India, while it is highest along the western coast of India. Moreover, the assessment of multifractal characteristics of different temperature series during the pre- and post-1976–1977 period of the Pacific climate shift reveals a notable decrease in multifractal strength and persistence in the post-1976–1977 series across all regions. Moreover, for the detection of climate change and its dominant driver, we propose a new rolling window multifractal (RWM) framework by evaluating the temporal evolution of the spectral exponents and the Hurst exponent. This study successfully captured the regime shifts during the periods of 1976–1977 and 1997–1998. Interestingly, the earlier climatic shift primarily mitigated the persistence of the Tmax series, whereas the latter shift significantly influenced the persistence of the Tmean series in the majority of temperature-homogeneous regions in India.","PeriodicalId":12435,"journal":{"name":"Fractal and Fractional","volume":null,"pages":null},"PeriodicalIF":3.6000,"publicationDate":"2024-04-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fractal and Fractional","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.3390/fractalfract8040241","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
Studying atmospheric temperature characteristics is crucial under climate change, as it helps us to understand the changing patterns in temperature that have significant implications for the environment, ecosystems, and human well-being. This study presents the comprehensive analysis of the spatiotemporal variability of scaling behavior of daily temperature series across the whole Indian mainland, using a Multifractal Detrended Fluctuation Analysis (MFDFA). The analysis considered 1° × 1° datasets of maximum temperature (Tmax), minimum temperature (Tmin), mean temperature (Tmean), and diurnal temperature range (DTR) (TDTR = Tmax − Tmin) from 1951 to 2016 to compare their scaling behavior for the first time. Our results indicate that the Tmin series exhibits the highest persistence (with the Hurst exponent ranging from 0.849 to unity, and a mean of 0.971), and all four-temperature series display long-term persistence and multifractal characteristics. The variability of the multifractal characteristics is less significant in North–Central India, while it is highest along the western coast of India. Moreover, the assessment of multifractal characteristics of different temperature series during the pre- and post-1976–1977 period of the Pacific climate shift reveals a notable decrease in multifractal strength and persistence in the post-1976–1977 series across all regions. Moreover, for the detection of climate change and its dominant driver, we propose a new rolling window multifractal (RWM) framework by evaluating the temporal evolution of the spectral exponents and the Hurst exponent. This study successfully captured the regime shifts during the periods of 1976–1977 and 1997–1998. Interestingly, the earlier climatic shift primarily mitigated the persistence of the Tmax series, whereas the latter shift significantly influenced the persistence of the Tmean series in the majority of temperature-homogeneous regions in India.
期刊介绍:
Fractal and Fractional is an international, scientific, peer-reviewed, open access journal that focuses on the study of fractals and fractional calculus, as well as their applications across various fields of science and engineering. It is published monthly online by MDPI and offers a cutting-edge platform for research papers, reviews, and short notes in this specialized area. The journal, identified by ISSN 2504-3110, encourages scientists to submit their experimental and theoretical findings in great detail, with no limits on the length of manuscripts to ensure reproducibility. A key objective is to facilitate the publication of detailed research, including experimental procedures and calculations. "Fractal and Fractional" also stands out for its unique offerings: it warmly welcomes manuscripts related to research proposals and innovative ideas, and allows for the deposition of electronic files containing detailed calculations and experimental protocols as supplementary material.