{"title":"ARIoTEDef: Adversarially Robust IoT Early Defense System Based on Self-Evolution against Multi-step Attacks","authors":"Mengdie Huang, Hyunwoo Lee, Ashish Kundu, Xiaofeng Chen, Anand Mudgerikar, Ninghui Li, Elisa Bertino","doi":"10.1145/3660646","DOIUrl":null,"url":null,"abstract":"\n IoT cyber threats, exemplified by jackware and crypto mining, underscore the vulnerability of IoT devices. Due to the multi-step nature of many attacks, early detection is vital for a swift response and preventing malware propagation. However, accurately detecting early-stage attacks is challenging, as attackers employ stealthy, zero-day, or adversarial machine learning to evade detection. To enhance security, we propose ARIoTEDef, an\n A\n dversarially\n R\n obust\n IoT\n E\n arly\n Def\n ense system, which identifies early-stage infections and evolves autonomously. It models multi-stage attacks based on a cyber kill chain and maintains stage-specific detectors. When anomalies in the later action stage emerge, the system retroactively analyzes event logs using an attention-based Seq2Seq model to identify early infections. Then, the infection detector is updated with information about the identified infections. We have evaluated ARIoTEDef against multi-stage attacks, such as the Mirai botnet. Results show that the infection detector’s average F1 score increases from 0.31 to 0.87 after one evolution round. We have also conducted an extensive analysis of ARIoTEDef against adversarial evasion attacks. Our results show that ARIoTEDef is robust and benefits from multiple rounds of evolution.\n","PeriodicalId":29764,"journal":{"name":"ACM Transactions on Internet of Things","volume":null,"pages":null},"PeriodicalIF":3.5000,"publicationDate":"2024-04-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Transactions on Internet of Things","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3660646","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 1
Abstract
IoT cyber threats, exemplified by jackware and crypto mining, underscore the vulnerability of IoT devices. Due to the multi-step nature of many attacks, early detection is vital for a swift response and preventing malware propagation. However, accurately detecting early-stage attacks is challenging, as attackers employ stealthy, zero-day, or adversarial machine learning to evade detection. To enhance security, we propose ARIoTEDef, an
A
dversarially
R
obust
IoT
E
arly
Def
ense system, which identifies early-stage infections and evolves autonomously. It models multi-stage attacks based on a cyber kill chain and maintains stage-specific detectors. When anomalies in the later action stage emerge, the system retroactively analyzes event logs using an attention-based Seq2Seq model to identify early infections. Then, the infection detector is updated with information about the identified infections. We have evaluated ARIoTEDef against multi-stage attacks, such as the Mirai botnet. Results show that the infection detector’s average F1 score increases from 0.31 to 0.87 after one evolution round. We have also conducted an extensive analysis of ARIoTEDef against adversarial evasion attacks. Our results show that ARIoTEDef is robust and benefits from multiple rounds of evolution.