Shaochuan Yang, Kaizhi Huang, Hehao Niu, Yi Wang, Zheng Chu, Gaojie Chen, Zhen Li
{"title":"Weighted Sum Secrecy Rate Optimization for Cooperative Double-IRS-Assisted Multiuser Network","authors":"Shaochuan Yang, Kaizhi Huang, Hehao Niu, Yi Wang, Zheng Chu, Gaojie Chen, Zhen Li","doi":"10.1049/2024/7768640","DOIUrl":null,"url":null,"abstract":"<div>\n <p>In this paper, we present a double-intelligent reflecting surfaces (IRS)-assisted multiuser secure system where the inter-IRS channel is considered. In particular, we maximize the weighted sum secrecy rate of the system by jointly optimizing the beamforming vector for transmitted signal and artificial noise at the base station (BS) and the cooperative phase shifts of two IRSs, under the constraints of transmission power at the BS and the unit-modulus phase shift of IRSs. To tackle the nonconvexity of the optimization problem, we first convert the objective function to its concave lower bound by utilizing a novel successive convex approximation technique, then solve the transformed problem iteratively by applying an alternating optimization method. The Lagrange dual method, Karush–Kuhn–Tucker conditions, and alternating direction method of multipliers are applied to develop a low-complexity solution for each subproblem. Finally, simulation results are provided to verify the advantages of the cooperative double-IRS scheme in comparison with the benchmark schemes.</p>\n </div>","PeriodicalId":56301,"journal":{"name":"IET Signal Processing","volume":"2024 1","pages":""},"PeriodicalIF":1.1000,"publicationDate":"2024-04-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/2024/7768640","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IET Signal Processing","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/2024/7768640","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
In this paper, we present a double-intelligent reflecting surfaces (IRS)-assisted multiuser secure system where the inter-IRS channel is considered. In particular, we maximize the weighted sum secrecy rate of the system by jointly optimizing the beamforming vector for transmitted signal and artificial noise at the base station (BS) and the cooperative phase shifts of two IRSs, under the constraints of transmission power at the BS and the unit-modulus phase shift of IRSs. To tackle the nonconvexity of the optimization problem, we first convert the objective function to its concave lower bound by utilizing a novel successive convex approximation technique, then solve the transformed problem iteratively by applying an alternating optimization method. The Lagrange dual method, Karush–Kuhn–Tucker conditions, and alternating direction method of multipliers are applied to develop a low-complexity solution for each subproblem. Finally, simulation results are provided to verify the advantages of the cooperative double-IRS scheme in comparison with the benchmark schemes.
期刊介绍:
IET Signal Processing publishes research on a diverse range of signal processing and machine learning topics, covering a variety of applications, disciplines, modalities, and techniques in detection, estimation, inference, and classification problems. The research published includes advances in algorithm design for the analysis of single and high-multi-dimensional data, sparsity, linear and non-linear systems, recursive and non-recursive digital filters and multi-rate filter banks, as well a range of topics that span from sensor array processing, deep convolutional neural network based approaches to the application of chaos theory, and far more.
Topics covered by scope include, but are not limited to:
advances in single and multi-dimensional filter design and implementation
linear and nonlinear, fixed and adaptive digital filters and multirate filter banks
statistical signal processing techniques and analysis
classical, parametric and higher order spectral analysis
signal transformation and compression techniques, including time-frequency analysis
system modelling and adaptive identification techniques
machine learning based approaches to signal processing
Bayesian methods for signal processing, including Monte-Carlo Markov-chain and particle filtering techniques
theory and application of blind and semi-blind signal separation techniques
signal processing techniques for analysis, enhancement, coding, synthesis and recognition of speech signals
direction-finding and beamforming techniques for audio and electromagnetic signals
analysis techniques for biomedical signals
baseband signal processing techniques for transmission and reception of communication signals
signal processing techniques for data hiding and audio watermarking
sparse signal processing and compressive sensing
Special Issue Call for Papers:
Intelligent Deep Fuzzy Model for Signal Processing - https://digital-library.theiet.org/files/IET_SPR_CFP_IDFMSP.pdf