Environmental niche modelling of the Chinese pond mussel invasion in Europe under climate change scenarios

Q2 Agricultural and Biological Sciences Ecologica Montenegrina Pub Date : 2024-04-19 DOI:10.37828/em.2024.72.20
Ilya V. Vikhrev, I. Bolotov, M. Gofarov, A. Kondakov, Ekaterina S. Konopleva, Darya V. Kruk
{"title":"Environmental niche modelling of the Chinese pond mussel invasion in Europe under climate change scenarios","authors":"Ilya V. Vikhrev, I. Bolotov, M. Gofarov, A. Kondakov, Ekaterina S. Konopleva, Darya V. Kruk","doi":"10.37828/em.2024.72.20","DOIUrl":null,"url":null,"abstract":"In this paper, we modelled the Chinese pond mussel distribution in the European subcontinent under the recent climatic conditions and two climate change scenarios.  Using species records of Sinanodonta woodiana (Bivalvia: Unionidae) in Europe and a set of bioclimatic variables, we applied the maximum entropy approach provided by MaxEnt to build the species distribution models and investigate how each climatic variable affects the species distribution. We found that winter temperatures had the largest contribution to the species distribution in all three scenarios (recent, RCP 4.5, RCP 8.5). We applied the minimum training presence threshold, as a less stringent, and 10th percentile training presence threshold, as more stringent, to map the potential area of the species occurrence. The models show that the climatically optimal range, depicted by the stricter threshold, will be expanded eastwards under all three scenarios. At the same time, the area of minimally suitable environments, represented by the less stringent threshold, will be contracted in the future climate. The species distribution models highlight that the climatic conditions of the British Isles and the Azov-Kuban Lowland are the most suitable, among the uninvaded regions, for further S. woodiana invasion.","PeriodicalId":37846,"journal":{"name":"Ecologica Montenegrina","volume":" 31","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-04-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ecologica Montenegrina","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.37828/em.2024.72.20","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Agricultural and Biological Sciences","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we modelled the Chinese pond mussel distribution in the European subcontinent under the recent climatic conditions and two climate change scenarios.  Using species records of Sinanodonta woodiana (Bivalvia: Unionidae) in Europe and a set of bioclimatic variables, we applied the maximum entropy approach provided by MaxEnt to build the species distribution models and investigate how each climatic variable affects the species distribution. We found that winter temperatures had the largest contribution to the species distribution in all three scenarios (recent, RCP 4.5, RCP 8.5). We applied the minimum training presence threshold, as a less stringent, and 10th percentile training presence threshold, as more stringent, to map the potential area of the species occurrence. The models show that the climatically optimal range, depicted by the stricter threshold, will be expanded eastwards under all three scenarios. At the same time, the area of minimally suitable environments, represented by the less stringent threshold, will be contracted in the future climate. The species distribution models highlight that the climatic conditions of the British Isles and the Azov-Kuban Lowland are the most suitable, among the uninvaded regions, for further S. woodiana invasion.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
气候变化情景下中国池沼贻贝入侵欧洲的环境生态位建模
本文模拟了近期气候条件和两种气候变化情景下中国池贻贝在欧洲次大陆的分布情况。 利用中国池沼贻贝(双壳类:Unionidae)在欧洲的物种记录和一组生物气候变量,我们采用 MaxEnt 提供的最大熵方法建立了物种分布模型,并研究了各气候变量对物种分布的影响。我们发现,在所有三种情景(近期、RCP 4.5、RCP 8.5)中,冬季气温对物种分布的影响最大。我们采用了较宽松的最小训练出现阈值和较宽松的第 10 百分位数训练出现阈值来绘制物种出现的潜在区域图。模型显示,在三种情况下,较严格阈值所描述的气候最佳范围都将向东扩展。与此同时,在未来气候条件下,以较宽阈值为代表的最低适宜环境区域将缩小。物种分布模型突出表明,在未受入侵的地区中,不列颠群岛和亚速-库班低地的气候条件最适合 S. woodiana 的进一步入侵。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Ecologica Montenegrina
Ecologica Montenegrina Agricultural and Biological Sciences-Animal Science and Zoology
CiteScore
1.80
自引率
0.00%
发文量
89
审稿时长
3 weeks
期刊介绍: Ecologica Montenegrina (ISSN 2336-9744 (online) | ISSN 2337-0173 (print)) is peer-reviewed journal in which scientific articles and reports are quickly published. The papers are in the fields of taxonomy, biogeography and ecology (for example: new taxa for science, taxonomic revision, and/or fundamental ecology and biogeography papers). Open access publishing option is strongly encouraged for authors with research grants and other funds. For those without grants/funds, all accepted manuscripts will be published but access is secured for subscribers only.
期刊最新文献
On the terminology of the genitalia structures of lichen moths (Lepidoptera: Erebidae: Arctiinae: Lithosiini) with some references to Noctuidae On so-called ‘Crimean’ Parnassius apollo breitfussi Bryk, 1914 (Lepidoptera: Papilionidae) To the distribution of the genus Negotinthia O. Gorbunov, 2001 (Lepidoptera: Sesiidae) in the Crimea Shar Mountain National Park (R. North Macedonia) - shelter for caddisfly biodiversity in the country A story of becoming a horticultural threat, cypress jewel beetle Lamprodila festiva (Coleoptera, Buprestidae): analytical approach of its European escalation based on bibliographical sources
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1