Fu Zhang Wang, I. L. Animasaun, Taseer Muhammad, S. S. Okoya
{"title":"Recent Advancements in Fluid Dynamics: Drag Reduction, Lift Generation, Computational Fluid Dynamics, Turbulence Modelling, and Multiphase Flow","authors":"Fu Zhang Wang, I. L. Animasaun, Taseer Muhammad, S. S. Okoya","doi":"10.1007/s13369-024-08945-3","DOIUrl":null,"url":null,"abstract":"<div><p>By improving the understanding of fluid behaviour and allowing the development of cutting-edge technologies that enhance fluid-related processes in various sectors, advances in fluid dynamics serve a crucial role in both science and engineering. Sequel to the broad applicability of fluid dynamics leading to more efficient, sustainable, and innovative solutions for real-world challenges associated with the motion of liquids and gases, reviews of the recent advancements are far-fetched. The scope of the review was structured to focus on recent published facts on lift generation and drag reduction of aeroplanes, Computational Fluid Dynamics, turbulence modelling, and multiphase flow. Research synthesis which focuses on summarizing the state of the art of research facts on fluid dynamics was adopted. It is worth concluding that fluid dynamics principles stand as a cornerstone, unequivocally driving the relentless advancement of aerospace and automotive engineering, crucially contributing to the development of drag reduction techniques, precision control of lift generation, streamlined shapes for drag minimization, innovative wing profiles for enhanced lift, and effective boundary layer control for drag reduction. Recent advancements in Computational Fluid dynamics have revolutionized engineering simulations, providing unparalleled accuracy and efficiency in modelling complex fluid flow phenomena, from aerodynamics to hydrodynamics, thereby significantly accelerating the design and optimization processes across various industries. Studying of multiple fluid phases moving through a system simultaneously causes complicated interactions, phase transition events, and a variety of flow patterns, making it a complex but essential research topic. Experts face challenges validating Computational Fluid Dynamics results due to insufficient experimental data.\n</p></div>","PeriodicalId":54354,"journal":{"name":"Arabian Journal for Science and Engineering","volume":"49 8","pages":"10237 - 10249"},"PeriodicalIF":2.6000,"publicationDate":"2024-04-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Arabian Journal for Science and Engineering","FirstCategoryId":"103","ListUrlMain":"https://link.springer.com/article/10.1007/s13369-024-08945-3","RegionNum":4,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
By improving the understanding of fluid behaviour and allowing the development of cutting-edge technologies that enhance fluid-related processes in various sectors, advances in fluid dynamics serve a crucial role in both science and engineering. Sequel to the broad applicability of fluid dynamics leading to more efficient, sustainable, and innovative solutions for real-world challenges associated with the motion of liquids and gases, reviews of the recent advancements are far-fetched. The scope of the review was structured to focus on recent published facts on lift generation and drag reduction of aeroplanes, Computational Fluid Dynamics, turbulence modelling, and multiphase flow. Research synthesis which focuses on summarizing the state of the art of research facts on fluid dynamics was adopted. It is worth concluding that fluid dynamics principles stand as a cornerstone, unequivocally driving the relentless advancement of aerospace and automotive engineering, crucially contributing to the development of drag reduction techniques, precision control of lift generation, streamlined shapes for drag minimization, innovative wing profiles for enhanced lift, and effective boundary layer control for drag reduction. Recent advancements in Computational Fluid dynamics have revolutionized engineering simulations, providing unparalleled accuracy and efficiency in modelling complex fluid flow phenomena, from aerodynamics to hydrodynamics, thereby significantly accelerating the design and optimization processes across various industries. Studying of multiple fluid phases moving through a system simultaneously causes complicated interactions, phase transition events, and a variety of flow patterns, making it a complex but essential research topic. Experts face challenges validating Computational Fluid Dynamics results due to insufficient experimental data.
期刊介绍:
King Fahd University of Petroleum & Minerals (KFUPM) partnered with Springer to publish the Arabian Journal for Science and Engineering (AJSE).
AJSE, which has been published by KFUPM since 1975, is a recognized national, regional and international journal that provides a great opportunity for the dissemination of research advances from the Kingdom of Saudi Arabia, MENA and the world.