On the Scalability of a Membrane Unit for Ultrapure Hydrogen Separation

Hydrogen Pub Date : 2024-04-17 DOI:10.3390/hydrogen5020010
Vincenzo Narcisi, Luca Farina, Alessia Santucci
{"title":"On the Scalability of a Membrane Unit for Ultrapure Hydrogen Separation","authors":"Vincenzo Narcisi, Luca Farina, Alessia Santucci","doi":"10.3390/hydrogen5020010","DOIUrl":null,"url":null,"abstract":"Hydrogen permeation sparked a renewed interest in the second half of the 20th century due to the favorable features of this element as an energy factor. Furthermore, niche applications such as nuclear fusion gained attention for the highest selectivity ensured by self-supported dense metallic membranes, especially those consisting of Pd-based alloys. In this framework, the ENEA Frascati laboratories have decades of experience in the manufacturing, integration, and operation of Pd-Ag permeators. Most of the experimental investigations were performed on single-tube membranes, proving their performance under relevant operational conditions. Nowadays, once the applicability of this technology has been demonstrated, the scalability of the single-tube experience over medium- and large-scale units must be verified. To do this, ENEA Frascati laboratories have designed and constructed a multi-tube permeator, namely the Medium-Scaled Membrane Reactor (MeSMeR), focused on scalability assessment. In this work, the results obtained with the MeSMeR facility have been compared with previous experimental campaigns conducted on single-tube units, and the scalability of the permeation results has been proven. Moreover, post-test simulations have been performed based on single-tube finite element modeling, proving the scalability of the numerical outcomes and the possibility of using this tool for scale-up design procedures.","PeriodicalId":13230,"journal":{"name":"Hydrogen","volume":" 45","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-04-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Hydrogen","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/hydrogen5020010","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Hydrogen permeation sparked a renewed interest in the second half of the 20th century due to the favorable features of this element as an energy factor. Furthermore, niche applications such as nuclear fusion gained attention for the highest selectivity ensured by self-supported dense metallic membranes, especially those consisting of Pd-based alloys. In this framework, the ENEA Frascati laboratories have decades of experience in the manufacturing, integration, and operation of Pd-Ag permeators. Most of the experimental investigations were performed on single-tube membranes, proving their performance under relevant operational conditions. Nowadays, once the applicability of this technology has been demonstrated, the scalability of the single-tube experience over medium- and large-scale units must be verified. To do this, ENEA Frascati laboratories have designed and constructed a multi-tube permeator, namely the Medium-Scaled Membrane Reactor (MeSMeR), focused on scalability assessment. In this work, the results obtained with the MeSMeR facility have been compared with previous experimental campaigns conducted on single-tube units, and the scalability of the permeation results has been proven. Moreover, post-test simulations have been performed based on single-tube finite element modeling, proving the scalability of the numerical outcomes and the possibility of using this tool for scale-up design procedures.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
论超纯氢分离薄膜装置的可扩展性
20 世纪下半叶,由于氢元素作为能源因素的有利特性,氢渗透再次引发了人们的兴趣。此外,核聚变等利基应用也因自支撑致密金属膜,尤其是由钯基合金组成的金属膜所确保的最高选择性而备受关注。在此框架下,ENEA 弗拉斯卡蒂实验室在钯银渗透器的制造、集成和运行方面拥有数十年的经验。大多数实验研究都是在单管膜上进行的,证明了它们在相关操作条件下的性能。如今,一旦证明了这项技术的适用性,就必须验证单管经验在中型和大型装置上的可扩展性。为此,ENEA Frascati 实验室设计并建造了一个多管渗透器,即中型膜反应器 (MeSMeR),重点进行可扩展性评估。在这项工作中,MeSMeR 设备获得的结果与之前在单管设备上进行的实验活动进行了比较,并证明了渗透结果的可扩展性。此外,在单管有限元建模的基础上进行了试验后模拟,证明了数值结果的可扩展性,以及将这一工具用于放大设计程序的可能性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Comparison of the Temperature, Radiation, and Heat Flux Distribution of a Hydrogen and a Methane Flame in a Crucible Furnace Using Numerical Simulation Opportunities and Challenges of Hydrogen Ports: An Empirical Study in Australia and Japan The Characteristics of a Ni/Cr/Ru Catalyst for a Biogas Dry Reforming Membrane Reactor Using a Pd/Cu Membrane and a Comparison of It with a Ni/Cr Catalyst PdS-ZnS-Doped Electrospun Polymer Nanofibers as Effective Photocatalyst for Hydrogen Evolution Instances of Safety-Related Advances in Hydrogen as Regards Its Gaseous Transport and Buffer Storage and Its Solid-State Storage
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1