Vaiyapuri Soundharrajan, Sungjin Kim, Subramanian Nithiananth, Muhammad H. Alfaruqi, JunJi Piao, Duong Tung Pham, Vinod Mathew, Sang A. Han, Jung Ho Kim, Jaekook Kim
{"title":"Cathode nanoarchitectonics with Na3VFe0.5Ti0.5(PO4)3: Overcoming the energy barriers of multielectron reactions for sodium-ion batteries","authors":"Vaiyapuri Soundharrajan, Sungjin Kim, Subramanian Nithiananth, Muhammad H. Alfaruqi, JunJi Piao, Duong Tung Pham, Vinod Mathew, Sang A. Han, Jung Ho Kim, Jaekook Kim","doi":"10.1002/cey2.551","DOIUrl":null,"url":null,"abstract":"<p>High electrochemical stability and safety make Na<sup>+</sup> superionic conductor (NASICON)-class cathodes highly desirable for Na-ion batteries (SIBs). However, their practical capacity is limited, leading to low specific energy. Furthermore, the low electrical conductivity combined with a decline in capacity upon prolonged cycling (>1000 cycles) related to the loss of active material-carbon conducting contact regions contributes to moderate rate performance and cycling stability. The need for high specific energy cathodes that meet practical electrochemical requirements has prompted a search for new materials. Herein, we introduce a new carbon-coated Na<sub>3</sub>VFe<sub>0.5</sub>Ti<sub>0.5</sub>(PO<sub>4</sub>)<sub>3</sub> (NVFTP/C) material as a promising candidate in the NASICON family of cathodes for SIBs. With a high specific energy of ∼457 Wh kg<sup>−1</sup> and a high Na<sup>+</sup> insertion voltage of 3.0 V versus Na<sup>+</sup>/Na, this cathode can undergo a reversible single-phase solid-solution and two-phase (de)sodiation evolution at 28 C (1 C = 174.7 mAh g<sup>−1</sup>) for up to 10,000 cycles. This study highlights the potential of utilizing low-cost and highly efficient cathodes made from Earth-abundant and harmless materials (Fe and Ti) with enriched Na<sup>+</sup>-storage properties in practical SIBs.</p>","PeriodicalId":33706,"journal":{"name":"Carbon Energy","volume":"6 9","pages":""},"PeriodicalIF":19.5000,"publicationDate":"2024-04-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/cey2.551","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Carbon Energy","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/cey2.551","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
High electrochemical stability and safety make Na+ superionic conductor (NASICON)-class cathodes highly desirable for Na-ion batteries (SIBs). However, their practical capacity is limited, leading to low specific energy. Furthermore, the low electrical conductivity combined with a decline in capacity upon prolonged cycling (>1000 cycles) related to the loss of active material-carbon conducting contact regions contributes to moderate rate performance and cycling stability. The need for high specific energy cathodes that meet practical electrochemical requirements has prompted a search for new materials. Herein, we introduce a new carbon-coated Na3VFe0.5Ti0.5(PO4)3 (NVFTP/C) material as a promising candidate in the NASICON family of cathodes for SIBs. With a high specific energy of ∼457 Wh kg−1 and a high Na+ insertion voltage of 3.0 V versus Na+/Na, this cathode can undergo a reversible single-phase solid-solution and two-phase (de)sodiation evolution at 28 C (1 C = 174.7 mAh g−1) for up to 10,000 cycles. This study highlights the potential of utilizing low-cost and highly efficient cathodes made from Earth-abundant and harmless materials (Fe and Ti) with enriched Na+-storage properties in practical SIBs.
期刊介绍:
Carbon Energy is an international journal that focuses on cutting-edge energy technology involving carbon utilization and carbon emission control. It provides a platform for researchers to communicate their findings and critical opinions and aims to bring together the communities of advanced material and energy. The journal covers a broad range of energy technologies, including energy storage, photocatalysis, electrocatalysis, photoelectrocatalysis, and thermocatalysis. It covers all forms of energy, from conventional electric and thermal energy to those that catalyze chemical and biological transformations. Additionally, Carbon Energy promotes new technologies for controlling carbon emissions and the green production of carbon materials. The journal welcomes innovative interdisciplinary research with wide impact. It is indexed in various databases, including Advanced Technologies & Aerospace Collection/Database, Biological Science Collection/Database, CAS, DOAJ, Environmental Science Collection/Database, Web of Science and Technology Collection.