Efficient cytometry analysis with FlowSOM in python boosts interoperability with other single-cell tools.

IF 4.4 3区 生物学 Q1 BIOCHEMICAL RESEARCH METHODS Bioinformatics Pub Date : 2024-04-17 DOI:10.1093/bioinformatics/btae179
Artuur Couckuyt, Benjamin Rombaut, Yvan Saeys, S. van Gassen
{"title":"Efficient cytometry analysis with FlowSOM in python boosts interoperability with other single-cell tools.","authors":"Artuur Couckuyt, Benjamin Rombaut, Yvan Saeys, S. van Gassen","doi":"10.1093/bioinformatics/btae179","DOIUrl":null,"url":null,"abstract":"MOTIVATION\nWe describe a new Python implementation of FlowSOM, a clustering method for cytometry data.\n\n\nRESULTS\nThis implementation is faster than the original version in R, better adapted to work with single-cell omics data including integration with current single-cell data structures and includes all the original visualizations, such as the star and pie plot.\n\n\nAVAILABILITY\nThe FlowSOM Python implementation is freely available on GitHub: https://github.com/saeyslab/FlowSOM_Python.\n\n\nSUPPLEMENTARY INFORMATION\nSupplementary data are available at Bioinformatics online.","PeriodicalId":8903,"journal":{"name":"Bioinformatics","volume":null,"pages":null},"PeriodicalIF":4.4000,"publicationDate":"2024-04-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioinformatics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/bioinformatics/btae179","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

Abstract

MOTIVATION We describe a new Python implementation of FlowSOM, a clustering method for cytometry data. RESULTS This implementation is faster than the original version in R, better adapted to work with single-cell omics data including integration with current single-cell data structures and includes all the original visualizations, such as the star and pie plot. AVAILABILITY The FlowSOM Python implementation is freely available on GitHub: https://github.com/saeyslab/FlowSOM_Python. SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
在 python 中使用 FlowSOM 进行高效细胞测量分析,提高了与其他单细胞工具的互操作性。
MOTIVATION We describe a new Python implementation of FlowSOM, a clustering method for cytometry data.ResultThis implementation is faster than the original version in R, better adapted to work with single-cell omics data including integration with current single-cell data structures and includes all the original visualizations, such as the star and pie plot.AVAILABILITYThe FlowSOM Python implementation is free available on GitHub: https://github.com/saeyslab/FlowSOM_Python.SUPPLEMENTARY INFORMATIONSupplementary data are available at Bioinformatics online.
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Bioinformatics
Bioinformatics 生物-生化研究方法
CiteScore
11.20
自引率
5.20%
发文量
753
审稿时长
2.1 months
期刊介绍: The leading journal in its field, Bioinformatics publishes the highest quality scientific papers and review articles of interest to academic and industrial researchers. Its main focus is on new developments in genome bioinformatics and computational biology. Two distinct sections within the journal - Discovery Notes and Application Notes- focus on shorter papers; the former reporting biologically interesting discoveries using computational methods, the latter exploring the applications used for experiments.
期刊最新文献
MEHunter: Transformer-based mobile element variant detection from long reads PQSDC: a parallel lossless compressor for quality scores data via sequences partition and Run-Length prediction mapping. MUSE-XAE: MUtational Signature Extraction with eXplainable AutoEncoder enhances tumour types classification. CopyVAE: a variational autoencoder-based approach for copy number variation inference using single-cell transcriptomics CORDAX web server: An online platform for the prediction and 3D visualization of aggregation motifs in protein sequences.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1