Corrado Pancotti, Cesare Rollo, Francesco Codicè, G. Birolo, Piero Fariselli, T. Sanavia
{"title":"MUSE-XAE: MUtational Signature Extraction with eXplainable AutoEncoder enhances tumour types classification.","authors":"Corrado Pancotti, Cesare Rollo, Francesco Codicè, G. Birolo, Piero Fariselli, T. Sanavia","doi":"10.1093/bioinformatics/btae320","DOIUrl":null,"url":null,"abstract":"MOTIVATION\nMutational signatures are a critical component in deciphering the genetic alterations that underlie cancer development and have become a valuable resource to understand the genomic changes during tumorigenesis. Therefore, it is essential to employ precise and accurate methods for their extraction to ensure that the underlying patterns are reliably identified and can be effectively utilized in new strategies for diagnosis, prognosis and treatment of cancer patients.\n\n\nRESULTS\nWe present MUSE-XAE, a novel method for mutational signature extraction from cancer genomes using an explainable autoencoder. Our approach employs a hybrid architecture consisting of a nonlinear encoder that can capture nonlinear interactions among features, and a linear decoder which ensures the interpretability of the active signatures. We evaluated and compared MUSE-XAE with other available tools on both synthetic and real cancer datasets and demonstrated that it achieves superior performance in terms of precision and sensitivity in recovering mutational signature profiles. MUSE-XAE extracts highly discriminative mutational signature profiles by enhancing the classification of primary tumour types and subtypes in real world settings. This approach could facilitate further research in this area, with neural networks playing a critical role in advancing our understanding of cancer genomics.\n\n\nAVAILABILITY\nMUSE-XAE software is freely available at https://github.com/compbiomed-unito/MUSE-XAE.\n\n\nSUPPLEMENTARY INFORMATION\nSupplementary data are available at Bioinformatics online.","PeriodicalId":8903,"journal":{"name":"Bioinformatics","volume":null,"pages":null},"PeriodicalIF":4.4000,"publicationDate":"2024-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioinformatics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/bioinformatics/btae320","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
MOTIVATION
Mutational signatures are a critical component in deciphering the genetic alterations that underlie cancer development and have become a valuable resource to understand the genomic changes during tumorigenesis. Therefore, it is essential to employ precise and accurate methods for their extraction to ensure that the underlying patterns are reliably identified and can be effectively utilized in new strategies for diagnosis, prognosis and treatment of cancer patients.
RESULTS
We present MUSE-XAE, a novel method for mutational signature extraction from cancer genomes using an explainable autoencoder. Our approach employs a hybrid architecture consisting of a nonlinear encoder that can capture nonlinear interactions among features, and a linear decoder which ensures the interpretability of the active signatures. We evaluated and compared MUSE-XAE with other available tools on both synthetic and real cancer datasets and demonstrated that it achieves superior performance in terms of precision and sensitivity in recovering mutational signature profiles. MUSE-XAE extracts highly discriminative mutational signature profiles by enhancing the classification of primary tumour types and subtypes in real world settings. This approach could facilitate further research in this area, with neural networks playing a critical role in advancing our understanding of cancer genomics.
AVAILABILITY
MUSE-XAE software is freely available at https://github.com/compbiomed-unito/MUSE-XAE.
SUPPLEMENTARY INFORMATION
Supplementary data are available at Bioinformatics online.
期刊介绍:
The leading journal in its field, Bioinformatics publishes the highest quality scientific papers and review articles of interest to academic and industrial researchers. Its main focus is on new developments in genome bioinformatics and computational biology. Two distinct sections within the journal - Discovery Notes and Application Notes- focus on shorter papers; the former reporting biologically interesting discoveries using computational methods, the latter exploring the applications used for experiments.