Post-Process Considerations for Photopolymer 3D-Printed Injection Moulded Insert Tooling Applications

Gavin Keane, Andrew V. Healy, D. Devine
{"title":"Post-Process Considerations for Photopolymer 3D-Printed Injection Moulded Insert Tooling Applications","authors":"Gavin Keane, Andrew V. Healy, D. Devine","doi":"10.3390/jcs8040151","DOIUrl":null,"url":null,"abstract":"Injection moulding (IM) is a manufacturing technique used to produce intricately detailed plastic components with various surface finishes, enabling the production of high-tolerance functional parts at scale. Conversely, stereolithography (SLA) three-dimensional (3D) printing offers an alternative method for fabricating moulds with shorter lead times and reduced costs compared to conventional manufacturing. However, fabrication in a layer-by-layer fashion results in anisotropic properties and noticeable layer lines, known as the stair-step effect. This study investigates post-processing techniques for plaques with contrasting stair-step effects fabricated from commercially available SLA high-temperature resin, aiming to assess their suitability for IM applications. The results reveal that annealing significantly enhances part hardness and heat deflection temperature (HDT), albeit with a trade-off involving reduced flexural strength. Experimental findings indicate that the optimal stage for abrasive surface treatment is after UV curing and before annealing. Plaques exhibiting contrasting stair-step effects are characterized and evaluated for weight loss, dimensional accuracy, and surface roughness. The results demonstrate that abrasive blasting effectively removes the stair-step effect without compromising geometry while achieving polished surface finishes with roughness average (RA) values of 0.1 μm through sanding. Overall, a combination of abrasive blasting and sanding proves capable of precisely defining surface roughness without significant geometry loss, offering a viable approach to achieving traditional IM finishes suitable for both functional and aesthetic purposes.","PeriodicalId":502935,"journal":{"name":"Journal of Composites Science","volume":"29 S105","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-04-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Composites Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/jcs8040151","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Injection moulding (IM) is a manufacturing technique used to produce intricately detailed plastic components with various surface finishes, enabling the production of high-tolerance functional parts at scale. Conversely, stereolithography (SLA) three-dimensional (3D) printing offers an alternative method for fabricating moulds with shorter lead times and reduced costs compared to conventional manufacturing. However, fabrication in a layer-by-layer fashion results in anisotropic properties and noticeable layer lines, known as the stair-step effect. This study investigates post-processing techniques for plaques with contrasting stair-step effects fabricated from commercially available SLA high-temperature resin, aiming to assess their suitability for IM applications. The results reveal that annealing significantly enhances part hardness and heat deflection temperature (HDT), albeit with a trade-off involving reduced flexural strength. Experimental findings indicate that the optimal stage for abrasive surface treatment is after UV curing and before annealing. Plaques exhibiting contrasting stair-step effects are characterized and evaluated for weight loss, dimensional accuracy, and surface roughness. The results demonstrate that abrasive blasting effectively removes the stair-step effect without compromising geometry while achieving polished surface finishes with roughness average (RA) values of 0.1 μm through sanding. Overall, a combination of abrasive blasting and sanding proves capable of precisely defining surface roughness without significant geometry loss, offering a viable approach to achieving traditional IM finishes suitable for both functional and aesthetic purposes.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
光聚合物三维打印注塑模具应用的后处理注意事项
注塑成型(IM)是一种制造技术,用于生产具有各种表面光洁度的复杂精细的塑料部件,从而实现高精度功能部件的规模化生产。与此相反,立体光刻(SLA)三维(3D)打印为模具制造提供了另一种方法,与传统制造方法相比,它能缩短交付周期并降低成本。然而,逐层制造会导致各向异性和明显的层纹,即所谓的阶梯效应。本研究调查了用市售 SLA 高温树脂制造的具有对比阶梯效应的斑块的后处理技术,旨在评估它们是否适合即时通讯应用。结果表明,退火可显著提高部件硬度和热变形温度(HDT),但同时也会降低抗弯强度。实验结果表明,磨料表面处理的最佳阶段是在紫外线固化之后和退火之前。对表现出截然不同的阶梯效应的斑块进行了表征,并对重量损失、尺寸精度和表面粗糙度进行了评估。结果表明,喷砂能有效消除阶梯效应,同时不影响几何形状,通过打磨还能获得粗糙度平均值(RA)为 0.1 μm 的抛光表面。总之,喷砂和打磨相结合的方法证明能够精确界定表面粗糙度,而不会造成明显的几何形状损失,为实现既适合功能又美观的传统 IM 饰面提供了一种可行的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Effect of the Incorporation of Olive Tree Pruning Sawdust in the Production of Lightweight Mortars Properties of Composites Based on Polylactide Filled with Cork Filler Influence of Silica Nanoparticles on the Physical Properties of Random Polypropylene Analytical and Experimental Behaviour of GFRP-Reinforced Concrete Columns under Fire Loading Mechanical Characterization of Hybrid Steel Wire Mesh/Basalt/Epoxy Fiber-Reinforced Polymer Composite Laminates
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1