3D pressure-corrected ballistic extrapolation of solar wind speed in the inner heliosphere

IF 3.4 2区 物理与天体物理 Q2 ASTRONOMY & ASTROPHYSICS Journal of Space Weather and Space Climate Pub Date : 2024-04-16 DOI:10.1051/swsc/2024010
A. Timár, Andrea Opitz, Zoltan Nemeth, Zsofia Bebesi, N. Biro, Gábor Facskó, G. Koban, Á. Madár
{"title":"3D pressure-corrected ballistic extrapolation of solar wind speed in the inner heliosphere","authors":"A. Timár, Andrea Opitz, Zoltan Nemeth, Zsofia Bebesi, N. Biro, Gábor Facskó, G. Koban, Á. Madár","doi":"10.1051/swsc/2024010","DOIUrl":null,"url":null,"abstract":"Solar wind parameters at different locations in the inner heliosphere can be estimated using various solar wind extrapolation methods. The simple ballistic method extrapolates solar wind parameters from the point of measurement to a chosen heliospheric position by assuming that major solar wind structures are persistent and arrive relatively unaltered to the target position. The method considers the rotation period of the Sun while assuming a constant solar wind speed during radial propagation. We improve the simple ballistic model by considering the interaction between the slow and the fast solar wind with a pressure-correction during the propagation. Instead of extrapolating from the position of a single spacecraft, we apply this pressure-corrected ballistic method to 2D speed maps of the solar source surface available from solar coronal models to determine the solar wind speed in the inner heliosphere in 3D, between latitudes of ±50°. We also take into account the effects of the solar differential rotation in our model. Our method is simple, fast and it can be applied to different source surface datasets. The results of our model are validated with in situ data from the ACE spacecraft. We find that the pressure-corrected ballistic method can give accurate predictions of the solar wind in 3D.","PeriodicalId":17034,"journal":{"name":"Journal of Space Weather and Space Climate","volume":null,"pages":null},"PeriodicalIF":3.4000,"publicationDate":"2024-04-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Space Weather and Space Climate","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1051/swsc/2024010","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 0

Abstract

Solar wind parameters at different locations in the inner heliosphere can be estimated using various solar wind extrapolation methods. The simple ballistic method extrapolates solar wind parameters from the point of measurement to a chosen heliospheric position by assuming that major solar wind structures are persistent and arrive relatively unaltered to the target position. The method considers the rotation period of the Sun while assuming a constant solar wind speed during radial propagation. We improve the simple ballistic model by considering the interaction between the slow and the fast solar wind with a pressure-correction during the propagation. Instead of extrapolating from the position of a single spacecraft, we apply this pressure-corrected ballistic method to 2D speed maps of the solar source surface available from solar coronal models to determine the solar wind speed in the inner heliosphere in 3D, between latitudes of ±50°. We also take into account the effects of the solar differential rotation in our model. Our method is simple, fast and it can be applied to different source surface datasets. The results of our model are validated with in situ data from the ACE spacecraft. We find that the pressure-corrected ballistic method can give accurate predictions of the solar wind in 3D.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
内日光层太阳风速度的三维压力校正弹道外推法
内日光层不同位置的太阳风参数可利用各种太阳风外推方法估算。简单的弹道法假定主要太阳风结构持续存在并相对不变地到达目标位置,从而将太阳风参数从测量点外推到选定的日光层位置。该方法考虑了太阳的自转周期,同时假设太阳风速度在径向传播过程中保持不变。我们改进了简单的弹道模型,考虑了慢速太阳风和快速太阳风之间的相互作用以及传播过程中的压力校正。我们不是从单个航天器的位置进行推断,而是将这种压力校正弹道方法应用于太阳日冕模型提供的太阳源表面二维速度图,以确定纬度在±50°之间的内日光层三维太阳风速度。我们还在模型中考虑了太阳差转的影响。我们的方法简单、快速,可应用于不同的源面数据集。我们的模型结果得到了 ACE 航天器现场数据的验证。我们发现,压力校正弹道方法可以准确预测三维太阳风。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Space Weather and Space Climate
Journal of Space Weather and Space Climate ASTRONOMY & ASTROPHYSICS-GEOCHEMISTRY & GEOPHYSICS
CiteScore
6.90
自引率
6.10%
发文量
40
审稿时长
8 weeks
期刊介绍: The Journal of Space Weather and Space Climate (SWSC) is an international multi-disciplinary and interdisciplinary peer-reviewed open access journal which publishes papers on all aspects of space weather and space climate from a broad range of scientific and technical fields including solar physics, space plasma physics, aeronomy, planetology, radio science, geophysics, biology, medicine, astronautics, aeronautics, electrical engineering, meteorology, climatology, mathematics, economy, informatics.
期刊最新文献
Helio1D modeling of temporal variation of solar wind: interfacing between Multi-VP and 1D MHD for future operational forecasting at L1 On the Uncertain Intensity Estimate of the 1859 Carrington Storm The Nature of the mesoscale field-aligned currents in the auroral oval for positive IMF BZ: More frequent occurrence in the dawnside sector than in the duskside sector 3D pressure-corrected ballistic extrapolation of solar wind speed in the inner heliosphere Using sunRunner3D to interpret the global structure of the heliosphere from in-situ measurements
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1