The Impact of Wheel Flat on Traction Drive System of Electric Locomotives

IF 1.9 4区 工程技术 Q3 ENGINEERING, ELECTRICAL & ELECTRONIC IET Electrical Systems in Transportation Pub Date : 2024-04-16 DOI:10.1049/2024/2889871
Like Pan, Bing Lu, Caizhi Yang, Liming Chen, Yang Song, Tao Zhang
{"title":"The Impact of Wheel Flat on Traction Drive System of Electric Locomotives","authors":"Like Pan,&nbsp;Bing Lu,&nbsp;Caizhi Yang,&nbsp;Liming Chen,&nbsp;Yang Song,&nbsp;Tao Zhang","doi":"10.1049/2024/2889871","DOIUrl":null,"url":null,"abstract":"<div>\n <p>Wheel flat can seriously affect the wheel–rail contact performance and cause impact vibrations, which significantly threaten the safe operation of railway vehicles. It is crucial to accurately assess the effects of wheel flats on the wheel–rail contact performance and the vibration impact on the traction drive system. However, studies related to wheel flats have focused on the mechanical part and have yet to fully consider the electrical and mechanical parts of the entire traction drive system. Therefore, this paper first builds an electromechanical coupling model based on the electric traction drive system and the locomotive-track coupling dynamics model. Then, based on this model, the impact of the wheel flat on the electrical and mechanical parts of the traction drive system under different flat lengths, different flat depths, and different vehicle speeds was analyzed. The results indicate that with the increasing depth of the flat spot, the wheel–rail dynamic response, motor rotor speed, and motor torque exhibit more significant fluctuations. Additionally, as the locomotive speed increases, the impact of the flat on the wheel–rail contact performance intensifies. Wheel flats can excite the 1st bending mode of the wheelset, resulting in vibration shocks at 90 Hz.</p>\n </div>","PeriodicalId":48518,"journal":{"name":"IET Electrical Systems in Transportation","volume":"2024 1","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2024-04-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/2024/2889871","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IET Electrical Systems in Transportation","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/2024/2889871","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

Wheel flat can seriously affect the wheel–rail contact performance and cause impact vibrations, which significantly threaten the safe operation of railway vehicles. It is crucial to accurately assess the effects of wheel flats on the wheel–rail contact performance and the vibration impact on the traction drive system. However, studies related to wheel flats have focused on the mechanical part and have yet to fully consider the electrical and mechanical parts of the entire traction drive system. Therefore, this paper first builds an electromechanical coupling model based on the electric traction drive system and the locomotive-track coupling dynamics model. Then, based on this model, the impact of the wheel flat on the electrical and mechanical parts of the traction drive system under different flat lengths, different flat depths, and different vehicle speeds was analyzed. The results indicate that with the increasing depth of the flat spot, the wheel–rail dynamic response, motor rotor speed, and motor torque exhibit more significant fluctuations. Additionally, as the locomotive speed increases, the impact of the flat on the wheel–rail contact performance intensifies. Wheel flats can excite the 1st bending mode of the wheelset, resulting in vibration shocks at 90 Hz.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
车轮扁平对电力机车牵引传动系统的影响
车轮扁平会严重影响轮轨接触性能并引起冲击振动,从而严重威胁铁路车辆的安全运行。准确评估车轮扁平对轮轨接触性能的影响以及对牵引传动系统的振动影响至关重要。然而,有关车轮扁平的研究主要集中在机械部分,尚未充分考虑整个牵引传动系统的电气和机械部分。因此,本文首先基于电力牵引驱动系统和机车-轨道耦合动力学模型建立了机电耦合模型。然后,基于该模型,分析了不同扁平长度、不同扁平深度和不同车速下车轮扁平对牵引传动系统机电部件的影响。结果表明,随着扁平点深度的增加,轮轨动态响应、电机转子速度和电机扭矩会出现更明显的波动。此外,随着机车速度的增加,平面对轮轨接触性能的影响也会加剧。车轮扁平会激发车轮组的第一弯曲模式,导致 90 Hz 的振动冲击。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
5.80
自引率
4.30%
发文量
18
审稿时长
29 weeks
期刊最新文献
Multiresolution Models of DC Traction Power Supply Systems With Reversible Substations A Preliminary Study on 2D Convolutional Neural Network-Based Discontinuous Rail Position Classification for Detection on Rail Breaks Using Distributed Acoustic Sensing Data Research on Electromagnetic Impact of High-Power Direct Drive Permanent Magnet Synchronous Motor on Track Circuit E-Gear Functionality Based on Mechanical Relays in Permanent Magnet Synchronous Machines Dynamic Distribution of Rail Potential with Regional Insulation Alteration in Multi-Train Urban Rail Transit
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1