Exploring Cryptocurrency Market Trends Using Artificial Intelligence

P. Gayatri, T. Ashish, B. Sankar, P. Evan Theodar, P. Srinivas Rao
{"title":"Exploring Cryptocurrency Market Trends Using Artificial Intelligence","authors":"P. Gayatri, T. Ashish, B. Sankar, P. Evan Theodar, P. Srinivas Rao","doi":"10.59256/ijire.20240502030","DOIUrl":null,"url":null,"abstract":"Cryptocurrency has emerged as a transformative force in the financial realm, garnering widespread attention and acceptance. However, its dynamic nature and inherent uncertainties pose significant challenges for investors. This study delves into the factors shaping cryptocurrency value formation by harnessing the power of advanced artificial intelligence frameworks. Specifically, we employ fully connected Artificial Neural Network (ANN) and Long Short-Term Memory (LSTM) Recurrent Neural Network to analyze the price dynamics of prominent cryptocurrencies such as Bitcoin, Ethereum, and Ripple. Our research reveals that ANN tends to rely more heavily on long-term historical data, whereas LSTM exhibits a penchant for short-term dynamics. Interestingly, LSTM demonstrates superior efficiency in leveraging historical information, yet with adequate data, ANN can achieve comparable accuracy. Our findings shed light on the predictability of cryptocurrency market prices, albeit the interpretation may vary depending on the machine-learning model utilized. This study underscores the significance of leveraging artificial intelligence in comprehending and forecasting cryptocurrency market trends, thereby mitigating investment risks in this dynamic landscape. Keyword: Cryptocurrency, Artificial Intelligence, Market Trends, Price Dynamics, Bitcoin.","PeriodicalId":516932,"journal":{"name":"International Journal of Innovative Research in Engineering","volume":"23 8","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-04-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Innovative Research in Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.59256/ijire.20240502030","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Cryptocurrency has emerged as a transformative force in the financial realm, garnering widespread attention and acceptance. However, its dynamic nature and inherent uncertainties pose significant challenges for investors. This study delves into the factors shaping cryptocurrency value formation by harnessing the power of advanced artificial intelligence frameworks. Specifically, we employ fully connected Artificial Neural Network (ANN) and Long Short-Term Memory (LSTM) Recurrent Neural Network to analyze the price dynamics of prominent cryptocurrencies such as Bitcoin, Ethereum, and Ripple. Our research reveals that ANN tends to rely more heavily on long-term historical data, whereas LSTM exhibits a penchant for short-term dynamics. Interestingly, LSTM demonstrates superior efficiency in leveraging historical information, yet with adequate data, ANN can achieve comparable accuracy. Our findings shed light on the predictability of cryptocurrency market prices, albeit the interpretation may vary depending on the machine-learning model utilized. This study underscores the significance of leveraging artificial intelligence in comprehending and forecasting cryptocurrency market trends, thereby mitigating investment risks in this dynamic landscape. Keyword: Cryptocurrency, Artificial Intelligence, Market Trends, Price Dynamics, Bitcoin.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用人工智能探索加密货币市场趋势
加密货币已成为金融领域的变革力量,赢得了广泛的关注和接受。然而,其动态性质和固有的不确定性给投资者带来了巨大挑战。本研究通过利用先进人工智能框架的力量,深入研究影响加密货币价值形成的因素。具体来说,我们采用全连接人工神经网络(ANN)和长短期记忆(LSTM)循环神经网络来分析比特币、以太坊和瑞波币等著名加密货币的价格动态。我们的研究发现,ANN 往往更依赖于长期历史数据,而 LSTM 则对短期动态数据情有独钟。有趣的是,LSTM 在利用历史信息方面表现出更高的效率,而 ANN 在数据充足的情况下也能达到相当的准确性。我们的研究结果揭示了加密货币市场价格的可预测性,尽管解释可能因所使用的机器学习模型而异。这项研究强调了利用人工智能理解和预测加密货币市场趋势的重要性,从而降低在这一动态环境中的投资风险。关键词:加密货币 人工智能 市场趋势 价格动态 比特币
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
An Analytical Study of Image Fusion Techniques in Image Processing for Data Security & Privacy Handwritten Digit Recognition Motorized Insurance with Group of Data Analysis Intelligent Fall Detection for Elders Smart Robotics in Hydroponic Agriculture: Enhancing Efficiency and Sustainability
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1