Northwestern University resource and education development initiatives to advance collaborative artificial intelligence across the learning health system

IF 2.6 Q2 HEALTH POLICY & SERVICES Learning Health Systems Pub Date : 2024-04-15 DOI:10.1002/lrh2.10417
Yuan Luo, Chengsheng Mao, Lazaro N. Sanchez-Pinto, Faraz S. Ahmad, Andrew Naidech, Luke Rasmussen, Jennifer A. Pacheco, Daniel Schneider, Leena B. Mithal, Scott Dresden, Kristi Holmes, Matthew Carson, Sanjiv J. Shah, Seema Khan, Susan Clare, Richard G. Wunderink, Huiping Liu, Theresa Walunas, Lee Cooper, Feng Yue, Firas Wehbe, Deyu Fang, David M. Liebovitz, Michael Markl, Kelly N. Michelson, Susanna A. McColley, Marianne Green, Justin Starren, Ronald T. Ackermann, Richard T. D'Aquila, James Adams, Donald Lloyd-Jones, Rex L. Chisholm, Abel Kho
{"title":"Northwestern University resource and education development initiatives to advance collaborative artificial intelligence across the learning health system","authors":"Yuan Luo,&nbsp;Chengsheng Mao,&nbsp;Lazaro N. Sanchez-Pinto,&nbsp;Faraz S. Ahmad,&nbsp;Andrew Naidech,&nbsp;Luke Rasmussen,&nbsp;Jennifer A. Pacheco,&nbsp;Daniel Schneider,&nbsp;Leena B. Mithal,&nbsp;Scott Dresden,&nbsp;Kristi Holmes,&nbsp;Matthew Carson,&nbsp;Sanjiv J. Shah,&nbsp;Seema Khan,&nbsp;Susan Clare,&nbsp;Richard G. Wunderink,&nbsp;Huiping Liu,&nbsp;Theresa Walunas,&nbsp;Lee Cooper,&nbsp;Feng Yue,&nbsp;Firas Wehbe,&nbsp;Deyu Fang,&nbsp;David M. Liebovitz,&nbsp;Michael Markl,&nbsp;Kelly N. Michelson,&nbsp;Susanna A. McColley,&nbsp;Marianne Green,&nbsp;Justin Starren,&nbsp;Ronald T. Ackermann,&nbsp;Richard T. D'Aquila,&nbsp;James Adams,&nbsp;Donald Lloyd-Jones,&nbsp;Rex L. Chisholm,&nbsp;Abel Kho","doi":"10.1002/lrh2.10417","DOIUrl":null,"url":null,"abstract":"<div>\n \n \n <section>\n \n <h3> Introduction</h3>\n \n <p>The rapid development of artificial intelligence (AI) in healthcare has exposed the unmet need for growing a multidisciplinary workforce that can collaborate effectively in the learning health systems. Maximizing the synergy among multiple teams is critical for Collaborative AI in Healthcare.</p>\n </section>\n \n <section>\n \n <h3> Methods</h3>\n \n <p>We have developed a series of data, tools, and educational resources for cultivating the next generation of multidisciplinary workforce for Collaborative AI in Healthcare. We built bulk-natural language processing pipelines to extract structured information from clinical notes and stored them in common data models. We developed multimodal AI/machine learning (ML) tools and tutorials to enrich the toolbox of the multidisciplinary workforce to analyze multimodal healthcare data. We have created a fertile ground to cross-pollinate clinicians and AI scientists and train the next generation of AI health workforce to collaborate effectively.</p>\n </section>\n \n <section>\n \n <h3> Results</h3>\n \n <p>Our work has democratized access to unstructured health information, AI/ML tools and resources for healthcare, and collaborative education resources. From 2017 to 2022, this has enabled studies in multiple clinical specialties resulting in 68 peer-reviewed publications. In 2022, our cross-discipline efforts converged and institutionalized into the Center for Collaborative AI in Healthcare.</p>\n </section>\n \n <section>\n \n <h3> Conclusions</h3>\n \n <p>Our Collaborative AI in Healthcare initiatives has created valuable educational and practical resources. They have enabled more clinicians, scientists, and hospital administrators to successfully apply AI methods in their daily research and practice, develop closer collaborations, and advanced the institution-level learning health system.</p>\n </section>\n </div>","PeriodicalId":43916,"journal":{"name":"Learning Health Systems","volume":"8 3","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2024-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/lrh2.10417","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Learning Health Systems","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/lrh2.10417","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"HEALTH POLICY & SERVICES","Score":null,"Total":0}
引用次数: 0

Abstract

Introduction

The rapid development of artificial intelligence (AI) in healthcare has exposed the unmet need for growing a multidisciplinary workforce that can collaborate effectively in the learning health systems. Maximizing the synergy among multiple teams is critical for Collaborative AI in Healthcare.

Methods

We have developed a series of data, tools, and educational resources for cultivating the next generation of multidisciplinary workforce for Collaborative AI in Healthcare. We built bulk-natural language processing pipelines to extract structured information from clinical notes and stored them in common data models. We developed multimodal AI/machine learning (ML) tools and tutorials to enrich the toolbox of the multidisciplinary workforce to analyze multimodal healthcare data. We have created a fertile ground to cross-pollinate clinicians and AI scientists and train the next generation of AI health workforce to collaborate effectively.

Results

Our work has democratized access to unstructured health information, AI/ML tools and resources for healthcare, and collaborative education resources. From 2017 to 2022, this has enabled studies in multiple clinical specialties resulting in 68 peer-reviewed publications. In 2022, our cross-discipline efforts converged and institutionalized into the Center for Collaborative AI in Healthcare.

Conclusions

Our Collaborative AI in Healthcare initiatives has created valuable educational and practical resources. They have enabled more clinicians, scientists, and hospital administrators to successfully apply AI methods in their daily research and practice, develop closer collaborations, and advanced the institution-level learning health system.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
西北大学资源和教育发展倡议,推动整个学习保健系统的人工智能合作
人工智能(AI)在医疗保健领域的快速发展,暴露出在学习型医疗系统中培养一支能够有效协作的多学科人才队伍的需求尚未得到满足。我们开发了一系列数据、工具和教育资源,用于培养下一代多学科医疗保健协作人工智能人才。我们建立了批量自然语言处理管道,从临床笔记中提取结构化信息,并将其存储在通用数据模型中。我们开发了多模态人工智能/机器学习(ML)工具和教程,以丰富多学科人才分析多模态医疗数据的工具箱。我们创造了一片沃土,让临床医生和人工智能科学家相互交流,并培训下一代人工智能医疗队伍进行有效合作。我们的工作实现了非结构化医疗信息、人工智能/ML 医疗工具和资源以及合作教育资源的民主化访问。从2017年到2022年,这使得多个临床专科的研究得以进行,共发表了68篇经同行评审的论文。2022 年,我们的跨学科努力汇聚在一起,并制度化为医疗保健领域人工智能合作中心。我们的医疗保健领域人工智能合作倡议创造了宝贵的教育和实用资源。它们使更多的临床医生、科学家和医院管理者能够在日常研究和实践中成功应用人工智能方法,发展更紧密的合作,并推进机构层面的学习型医疗系统。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Learning Health Systems
Learning Health Systems HEALTH POLICY & SERVICES-
CiteScore
5.60
自引率
22.60%
发文量
55
审稿时长
20 weeks
期刊最新文献
Issue Information Envisioning public health as a learning health system Thanks to our peer reviewers Learning health systems to implement chronic disease prevention programs: A novel framework and perspectives from an Australian health service The translation-to-policy learning cycle to improve public health
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1