K. Bliden, Sahib Singh, Roni Shanoada, Isha Kalia, U. Tantry, Alyssa Zimmerman, A. D. Babu, Lekshminarayan Raghavakurup, Taylor Stude, Damian Sidorski, Paul A Gurbel
{"title":"Genetics in the diagnosis and treatment of cardiovascular diseases","authors":"K. Bliden, Sahib Singh, Roni Shanoada, Isha Kalia, U. Tantry, Alyssa Zimmerman, A. D. Babu, Lekshminarayan Raghavakurup, Taylor Stude, Damian Sidorski, Paul A Gurbel","doi":"10.20517/jtgg.2023.59","DOIUrl":null,"url":null,"abstract":"Cardiovascular diseases (CVDs) remain one of the leading causes of morbidity and mortality worldwide, with genetics being a major risk factor. Genetic cardiovascular disease can occur either because of single variant (Mendelian) or polygenic influences and has been linked to inherited cardiovascular conditions (ICC) such as arrhythmias, cardiomyopathies, dyslipidemias, and aortopathies which are significant factors leading to sudden cardiac death in young adults. Timely screening, diagnosis, and management of ICC can not only provide life-saving treatment to a patient, but also identify at-risk family members. The field of pharmacogenomics (PGx) helped to understand the variable action of medications such as clopidogrel, aspirin, warfarin, and statin according to genotype. Newer technologies such as multi-omics can combine data from multiple sources such as genomics, epigenomics, transcriptomics, proteomics, metabolomics, and microbiome. These advancements can contribute to the development of polygenic prediction scores and precision medicine tailored to individual genotypes. Substantial strides have been made in genetic-based therapeutics, gene editing technologies, and drug delivery systems, which have significantly expanded treatment options for patients with acquired or inherited CVDs. Although variable, the country- and society-specific guidelines on genetic testing for ICC and PGx and treatment are being continuously updated to keep up with ongoing research in the field. Along with appropriate knowledge, other factors including cost and availability of genetic testing play a vital role in the usage by both physicians and patients. With the advent of newer genetic testing for CVDs, a key factor is the availability of genetic counselors (GCs) who are specifically trained in cardiovascular genomics. The current review provides a concise summary of the major influences of genetics in the diagnosis and treatment of CVDs.","PeriodicalId":73999,"journal":{"name":"Journal of translational genetics and genomics","volume":"53 5","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of translational genetics and genomics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.20517/jtgg.2023.59","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Cardiovascular diseases (CVDs) remain one of the leading causes of morbidity and mortality worldwide, with genetics being a major risk factor. Genetic cardiovascular disease can occur either because of single variant (Mendelian) or polygenic influences and has been linked to inherited cardiovascular conditions (ICC) such as arrhythmias, cardiomyopathies, dyslipidemias, and aortopathies which are significant factors leading to sudden cardiac death in young adults. Timely screening, diagnosis, and management of ICC can not only provide life-saving treatment to a patient, but also identify at-risk family members. The field of pharmacogenomics (PGx) helped to understand the variable action of medications such as clopidogrel, aspirin, warfarin, and statin according to genotype. Newer technologies such as multi-omics can combine data from multiple sources such as genomics, epigenomics, transcriptomics, proteomics, metabolomics, and microbiome. These advancements can contribute to the development of polygenic prediction scores and precision medicine tailored to individual genotypes. Substantial strides have been made in genetic-based therapeutics, gene editing technologies, and drug delivery systems, which have significantly expanded treatment options for patients with acquired or inherited CVDs. Although variable, the country- and society-specific guidelines on genetic testing for ICC and PGx and treatment are being continuously updated to keep up with ongoing research in the field. Along with appropriate knowledge, other factors including cost and availability of genetic testing play a vital role in the usage by both physicians and patients. With the advent of newer genetic testing for CVDs, a key factor is the availability of genetic counselors (GCs) who are specifically trained in cardiovascular genomics. The current review provides a concise summary of the major influences of genetics in the diagnosis and treatment of CVDs.