The Morphological and Thermal Characteristics of Hollow-Glass-Microsphere-Coated Phase Change Material–Cow Pie Embedded Recycled Plastic Tiles for Cool Roofs

S. Satya, P. S. Rama Sreekanth
{"title":"The Morphological and Thermal Characteristics of Hollow-Glass-Microsphere-Coated Phase Change Material–Cow Pie Embedded Recycled Plastic Tiles for Cool Roofs","authors":"S. Satya, P. S. Rama Sreekanth","doi":"10.3390/jcs8040148","DOIUrl":null,"url":null,"abstract":"This study addresses the global plastic waste crisis and the urban heat island effect by developing an innovative solution: recycled plastic roof tiles embedded with phase change material (PCM) and coated with hollow-glass-microsphere-based white paint. The samples were fabricated with cow pie fibers, OM37 and OM42 PCM materials with different wt./vol. values, i.e., 15/50, 20/50, 25/50, 30/50 ratios. The fabricated tiles were coated with hollow glass microspheres to provide a reflective layer. The tiles’ effectiveness was evaluated through morphological examination and thermal analysis. The SEM analysis revealed an excellent bonding ability for the PCM blend, i.e., OM37 and OM42 at a 20/50 ratio (wt./vol.) with cow pie fibers. Adding cow pie fibers to the PCM shifted the melting points of OM37 and OM42, indicating an increased heat storage capacity in both blends. The thermal conductivity results revealed decreased thermal conductivity with an increased cow pie fiber percentage. The recycled plastic roof tile of the PCM composite at a 20/50 (wt./vol.) ratio showed good thermal properties. Upon testing in real-time conditions in a physical setup, the roof tiles showed a temperature reduction of 8 °C from outdoors to indoors during the peak of summer. In winter, cozy temperatures were maintained indoors due to the heat regulation from the roof.","PeriodicalId":502935,"journal":{"name":"Journal of Composites Science","volume":"107 S3","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-04-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Composites Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/jcs8040148","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This study addresses the global plastic waste crisis and the urban heat island effect by developing an innovative solution: recycled plastic roof tiles embedded with phase change material (PCM) and coated with hollow-glass-microsphere-based white paint. The samples were fabricated with cow pie fibers, OM37 and OM42 PCM materials with different wt./vol. values, i.e., 15/50, 20/50, 25/50, 30/50 ratios. The fabricated tiles were coated with hollow glass microspheres to provide a reflective layer. The tiles’ effectiveness was evaluated through morphological examination and thermal analysis. The SEM analysis revealed an excellent bonding ability for the PCM blend, i.e., OM37 and OM42 at a 20/50 ratio (wt./vol.) with cow pie fibers. Adding cow pie fibers to the PCM shifted the melting points of OM37 and OM42, indicating an increased heat storage capacity in both blends. The thermal conductivity results revealed decreased thermal conductivity with an increased cow pie fiber percentage. The recycled plastic roof tile of the PCM composite at a 20/50 (wt./vol.) ratio showed good thermal properties. Upon testing in real-time conditions in a physical setup, the roof tiles showed a temperature reduction of 8 °C from outdoors to indoors during the peak of summer. In winter, cozy temperatures were maintained indoors due to the heat regulation from the roof.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用于凉爽屋顶的空心玻璃-微球包覆相变材料-牛粪嵌入式再生塑料瓦的形态和热特性
本研究针对全球塑料废物危机和城市热岛效应,开发了一种创新解决方案:在回收塑料瓦片中嵌入相变材料(PCM),并涂上基于中空玻璃微球的白色涂料。样品由牛皮纤维、OM37 和 OM42 PCM 材料制成,这些材料的重量/体积比各不相同,即 15/50、20/50、25/50 和 30/50。制成的瓷砖表面涂有空心玻璃微球,以提供反射层。通过形态检查和热分析评估了瓷砖的效果。扫描电子显微镜分析表明,PCM 混合物(即 OM37 和 OM42 与牛皮纤维的比例为 20/50(重量/体积))具有出色的粘合能力。在 PCM 中添加牛粪纤维会改变 OM37 和 OM42 的熔点,这表明这两种混合物的蓄热能力都有所提高。导热性结果表明,随着牛粪纤维比例的增加,导热性降低。20/50 (重量/体积)比例的 PCM 复合材料再生塑料瓦显示出良好的热性能。在物理装置的实时条件下进行测试后,屋顶瓦片显示,在夏季高峰期,从室外到室内的温度降低了 8 °C。在冬季,由于屋顶的热调节作用,室内温度保持舒适。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Effect of the Incorporation of Olive Tree Pruning Sawdust in the Production of Lightweight Mortars Properties of Composites Based on Polylactide Filled with Cork Filler Influence of Silica Nanoparticles on the Physical Properties of Random Polypropylene Analytical and Experimental Behaviour of GFRP-Reinforced Concrete Columns under Fire Loading Mechanical Characterization of Hybrid Steel Wire Mesh/Basalt/Epoxy Fiber-Reinforced Polymer Composite Laminates
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1