Hi-GeoMVP: a hierarchical geometry-enhanced deep learning model for drug response prediction.

IF 4.4 3区 生物学 Q1 BIOCHEMICAL RESEARCH METHODS Bioinformatics Pub Date : 2024-04-13 DOI:10.1093/bioinformatics/btae204
Yurui Chen, Louxin Zhang
{"title":"Hi-GeoMVP: a hierarchical geometry-enhanced deep learning model for drug response prediction.","authors":"Yurui Chen, Louxin Zhang","doi":"10.1093/bioinformatics/btae204","DOIUrl":null,"url":null,"abstract":"MOTIVATION\nPersonalized cancer treatments require accurate drug response predictions. Existing deep learning methods show promise but higher accuracy is needed to serve the purpose of precision medicine. The prediction accuracy can be improved with not only topology but geometrical information of drugs.\n\n\nRESULTS\nA novel deep learning methodology for drug response prediction is presented, named Hi-GeoMVP. It synthesizes hierarchical drug representation with multi-omics data, leveraging graph neural networks and variational autoencoders for detailed drug and cell line representations. Multi-task learning is employed to make better prediction, while both 2D and 3D molecular representations capture comprehensive drug information. Testing on the GDSC dataset confirms Hi-GeoMVP's enhanced performance, surpassing prior state-of-the-art methods by improving the Pearson correlation coefficient from 0.934 to 0.941 and decreasing the root mean square error from 0.969 to 0.931. In the case of blind test, Hi-GeoMVP demonstrated robustness, outperforming the best previous models with a superior Pearson correlation coefficient in the drug-blind test. These results underscore Hi-GeoMVP's capabilities in drug response prediction, implying its potential for precision medicine.\n\n\nAVAILABILITY AND IMPLEMENTATION\nThe source code is available at https://github.com/matcyr/Hi-GeoMVP.\n\n\nSUPPLEMENTARY INFORMATION\nSupplementary data is available at Bioinformatics online.","PeriodicalId":8903,"journal":{"name":"Bioinformatics","volume":null,"pages":null},"PeriodicalIF":4.4000,"publicationDate":"2024-04-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioinformatics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/bioinformatics/btae204","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

Abstract

MOTIVATION Personalized cancer treatments require accurate drug response predictions. Existing deep learning methods show promise but higher accuracy is needed to serve the purpose of precision medicine. The prediction accuracy can be improved with not only topology but geometrical information of drugs. RESULTS A novel deep learning methodology for drug response prediction is presented, named Hi-GeoMVP. It synthesizes hierarchical drug representation with multi-omics data, leveraging graph neural networks and variational autoencoders for detailed drug and cell line representations. Multi-task learning is employed to make better prediction, while both 2D and 3D molecular representations capture comprehensive drug information. Testing on the GDSC dataset confirms Hi-GeoMVP's enhanced performance, surpassing prior state-of-the-art methods by improving the Pearson correlation coefficient from 0.934 to 0.941 and decreasing the root mean square error from 0.969 to 0.931. In the case of blind test, Hi-GeoMVP demonstrated robustness, outperforming the best previous models with a superior Pearson correlation coefficient in the drug-blind test. These results underscore Hi-GeoMVP's capabilities in drug response prediction, implying its potential for precision medicine. AVAILABILITY AND IMPLEMENTATION The source code is available at https://github.com/matcyr/Hi-GeoMVP. SUPPLEMENTARY INFORMATION Supplementary data is available at Bioinformatics online.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Hi-GeoMVP:用于药物反应预测的分层几何增强深度学习模型。
动机个性化的癌症治疗需要准确的药物反应预测。现有的深度学习方法前景广阔,但要达到精准医疗的目的,还需要更高的准确性。结果提出了一种用于药物反应预测的新型深度学习方法,名为 Hi-GeoMVP。该方法利用图神经网络和变异自动编码器对详细的药物和细胞系进行表征,从而综合了多组学数据的分层药物表征。它采用多任务学习来进行更好的预测,而二维和三维分子表征都能捕捉到全面的药物信息。在 GDSC 数据集上进行的测试证实了 Hi-GeoMVP 性能的提高,其皮尔逊相关系数从 0.934 提高到了 0.941,均方根误差从 0.969 降低到了 0.931,超过了之前的先进方法。在盲测情况下,Hi-GeoMVP 表现出稳健性,在药盲测试中的皮尔逊相关系数优于之前的最佳模型。这些结果凸显了 Hi-GeoMVP 在药物反应预测方面的能力,暗示了它在精准医疗方面的潜力。可获得性和实施源代码可在 https://github.com/matcyr/Hi-GeoMVP.SUPPLEMENTARY 上获取信息补充数据可在 Bioinformatics online 上获取。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Bioinformatics
Bioinformatics 生物-生化研究方法
CiteScore
11.20
自引率
5.20%
发文量
753
审稿时长
2.1 months
期刊介绍: The leading journal in its field, Bioinformatics publishes the highest quality scientific papers and review articles of interest to academic and industrial researchers. Its main focus is on new developments in genome bioinformatics and computational biology. Two distinct sections within the journal - Discovery Notes and Application Notes- focus on shorter papers; the former reporting biologically interesting discoveries using computational methods, the latter exploring the applications used for experiments.
期刊最新文献
MEHunter: Transformer-based mobile element variant detection from long reads PQSDC: a parallel lossless compressor for quality scores data via sequences partition and Run-Length prediction mapping. MUSE-XAE: MUtational Signature Extraction with eXplainable AutoEncoder enhances tumour types classification. CopyVAE: a variational autoencoder-based approach for copy number variation inference using single-cell transcriptomics CORDAX web server: An online platform for the prediction and 3D visualization of aggregation motifs in protein sequences.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1