A Hydrogen-Bonded, Hexagonally Networked, Layered Framework with Large Aperture Designed by Structural Synchronization of a Macrocycle and Supramolecular Synthon
{"title":"A Hydrogen-Bonded, Hexagonally Networked, Layered Framework with Large Aperture Designed by Structural Synchronization of a Macrocycle and Supramolecular Synthon","authors":"Hiroki Yoshimura, Ryusei Oketani, Miki Naruoka, Norimitsu Tohnai and Ichiro Hisaki*, ","doi":"10.1021/prechem.4c00019","DOIUrl":null,"url":null,"abstract":"<p >To develop porous organic frameworks, precise control of the stacking manner of two-dimensional porous motifs and structural characterization of the resultant framework are important. From these points of view, porous molecular crystals formed through reversible intermolecular hydrogen bonds, such as hydrogen-bonded organic frameworks (HOFs), can provide deep insight because of their high crystallinity, affording single-crystalline X-ray diffraction analysis. In this study, we demonstrate that the stacking manner of hydrogen-bonded hexagonal network (HexNet) sheets can be controlled by synchronizing a homological triangular macrocyclic tecton and a hydrogen-bonded cyclic supramolecular synthon called the phenylene triangle. A structure of the resultant HOF was crystallographically characterized and revealed to have a large channel aperture of 2.4 nm. The HOF also shows thermal stability up to 290 °C, which is higher than that of the conventional HexNet frameworks.</p>","PeriodicalId":29793,"journal":{"name":"Precision Chemistry","volume":"2 5","pages":"221–228"},"PeriodicalIF":0.0000,"publicationDate":"2024-04-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/prechem.4c00019","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Precision Chemistry","FirstCategoryId":"1085","ListUrlMain":"https://pubs.acs.org/doi/10.1021/prechem.4c00019","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
To develop porous organic frameworks, precise control of the stacking manner of two-dimensional porous motifs and structural characterization of the resultant framework are important. From these points of view, porous molecular crystals formed through reversible intermolecular hydrogen bonds, such as hydrogen-bonded organic frameworks (HOFs), can provide deep insight because of their high crystallinity, affording single-crystalline X-ray diffraction analysis. In this study, we demonstrate that the stacking manner of hydrogen-bonded hexagonal network (HexNet) sheets can be controlled by synchronizing a homological triangular macrocyclic tecton and a hydrogen-bonded cyclic supramolecular synthon called the phenylene triangle. A structure of the resultant HOF was crystallographically characterized and revealed to have a large channel aperture of 2.4 nm. The HOF also shows thermal stability up to 290 °C, which is higher than that of the conventional HexNet frameworks.
期刊介绍:
Chemical research focused on precision enables more controllable predictable and accurate outcomes which in turn drive innovation in measurement science sustainable materials information materials personalized medicines energy environmental science and countless other fields requiring chemical insights.Precision Chemistry provides a unique and highly focused publishing venue for fundamental applied and interdisciplinary research aiming to achieve precision calculation design synthesis manipulation measurement and manufacturing. It is committed to bringing together researchers from across the chemical sciences and the related scientific areas to showcase original research and critical reviews of exceptional quality significance and interest to the broad chemistry and scientific community.