Min Seok Kim, Young Bin Kim, Minjong Lee, Heoung-Jae Chun
{"title":"Analysis of mechanical and shape memory properties of biocompatible shape memory polymers with different Fe3O4 contents","authors":"Min Seok Kim, Young Bin Kim, Minjong Lee, Heoung-Jae Chun","doi":"10.1088/2631-6331/ad3dbe","DOIUrl":null,"url":null,"abstract":"\n Shape memory polymers (SMPs), such as polycaprolactone, can recall their original shape when exposed to environmental factors like heat, light, or magnetic fields. These polymers are extensively used in medical applications, notably in stents, due to their shape memory and biocompatibility after implantation in the human body. However, conventional stents require balloons for expansion, limiting their flexibility. To address this, the study developed an SMP material that can regain its original shape without the need for a balloon. Magnetic-responsive Fe3O4 nanoparticles at concentrations of 10 %, 15 %, and 20 % were incorporated, resulting in a high shape memory ratio (84-93 %). The study also confirmed the uniform dispersion of nanoparticles using scanning electron microscopy (SEM) and measured the glass transition temperature, crystallization temperature, and melting point of the synthesized polymers using differential scanning calorimetry (DSC). Therefore, the biocompatible, magnetic-responsive shape-memory polymer developed in this study has the potential to be utilized in various medical devices as an advanced shape-memory material.","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":"4 2","pages":""},"PeriodicalIF":4.7000,"publicationDate":"2024-04-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1088/2631-6331/ad3dbe","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
Shape memory polymers (SMPs), such as polycaprolactone, can recall their original shape when exposed to environmental factors like heat, light, or magnetic fields. These polymers are extensively used in medical applications, notably in stents, due to their shape memory and biocompatibility after implantation in the human body. However, conventional stents require balloons for expansion, limiting their flexibility. To address this, the study developed an SMP material that can regain its original shape without the need for a balloon. Magnetic-responsive Fe3O4 nanoparticles at concentrations of 10 %, 15 %, and 20 % were incorporated, resulting in a high shape memory ratio (84-93 %). The study also confirmed the uniform dispersion of nanoparticles using scanning electron microscopy (SEM) and measured the glass transition temperature, crystallization temperature, and melting point of the synthesized polymers using differential scanning calorimetry (DSC). Therefore, the biocompatible, magnetic-responsive shape-memory polymer developed in this study has the potential to be utilized in various medical devices as an advanced shape-memory material.
期刊介绍:
ACS Applied Electronic Materials is an interdisciplinary journal publishing original research covering all aspects of electronic materials. The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrate knowledge in the areas of materials science, engineering, optics, physics, and chemistry into important applications of electronic materials. Sample research topics that span the journal's scope are inorganic, organic, ionic and polymeric materials with properties that include conducting, semiconducting, superconducting, insulating, dielectric, magnetic, optoelectronic, piezoelectric, ferroelectric and thermoelectric.
Indexed/Abstracted:
Web of Science SCIE
Scopus
CAS
INSPEC
Portico