Investigation of Crypthecodinium cohnii High-Cell-Density Fed-Batch Cultivations

K. Dubencovs, A. Suleiko, Anastasija Šuleiko, Elina Didrihsone, Mara Grube, K. Shvirksts, J. Vanags
{"title":"Investigation of Crypthecodinium cohnii High-Cell-Density Fed-Batch Cultivations","authors":"K. Dubencovs, A. Suleiko, Anastasija Šuleiko, Elina Didrihsone, Mara Grube, K. Shvirksts, J. Vanags","doi":"10.3390/fermentation10040203","DOIUrl":null,"url":null,"abstract":"Crypthecodinium cohnii is a marine microalga that can accumulate high amounts of polyunsaturated fatty acids (PUFAs) and thus replace conventional routes of fish oil production. They are associated with the destruction of marine resources and multiple downstream/purification complications. The major drawbacks of using C. cohnii for industrial-scale production are associated with low PUFA productivity. One of the means of increasing the PUFA synthesis rate is to maintain the medium component concentrations at optimal values throughout cultivation, thus increasing PUFA production efficiency, which can result in the successful transfer of the process to pilot and/or industrial scale. The goal of the present research was to develop techniques for increasing the efficiency of PUFA production via C. cohnii cultivation. Multiple experiments were carried out to test and fine-tune the cultivation medium composition and oxygen transfer factors. The biomass yields from individual components, yeast extract, sea salts, and glucose amounted to 5.5, 0.65, and 0.61 g·g−1, respectively. C. cohnii cell susceptibility to mechanical damage was experimentally evaluated. Power inputs of <276.5 W/m3 did not seem to promote cell destruction when Pitched-blade impellers were used. The obtained cultivation conditions were shown to be efficient in terms of increasing the biomass productivity and the omega-3 fatty acid content in C. cohnii. By using the applied methods, the maximal biomass productivity reached 8.0 g·L−1·day−1, while the highest obtained biomass concentration reached 110 g·L−1. A steady increase in the concentration of PUFAs during cultivation was observed from the FTIR data.","PeriodicalId":507249,"journal":{"name":"Fermentation","volume":"175 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-04-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fermentation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/fermentation10040203","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Crypthecodinium cohnii is a marine microalga that can accumulate high amounts of polyunsaturated fatty acids (PUFAs) and thus replace conventional routes of fish oil production. They are associated with the destruction of marine resources and multiple downstream/purification complications. The major drawbacks of using C. cohnii for industrial-scale production are associated with low PUFA productivity. One of the means of increasing the PUFA synthesis rate is to maintain the medium component concentrations at optimal values throughout cultivation, thus increasing PUFA production efficiency, which can result in the successful transfer of the process to pilot and/or industrial scale. The goal of the present research was to develop techniques for increasing the efficiency of PUFA production via C. cohnii cultivation. Multiple experiments were carried out to test and fine-tune the cultivation medium composition and oxygen transfer factors. The biomass yields from individual components, yeast extract, sea salts, and glucose amounted to 5.5, 0.65, and 0.61 g·g−1, respectively. C. cohnii cell susceptibility to mechanical damage was experimentally evaluated. Power inputs of <276.5 W/m3 did not seem to promote cell destruction when Pitched-blade impellers were used. The obtained cultivation conditions were shown to be efficient in terms of increasing the biomass productivity and the omega-3 fatty acid content in C. cohnii. By using the applied methods, the maximal biomass productivity reached 8.0 g·L−1·day−1, while the highest obtained biomass concentration reached 110 g·L−1. A steady increase in the concentration of PUFAs during cultivation was observed from the FTIR data.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
隐翅虫高细胞密度饲料批量栽培研究
隐杆线虫(Crypthecodinium cohnii)是一种海洋微藻,可以积累大量的多不饱和脂肪酸(PUFA),从而取代传统的鱼油生产途径。但这些方法会破坏海洋资源,并带来多种下游/提纯问题。将 C. cohnii 用于工业规模生产的主要缺点与低 PUFA 生产率有关。提高 PUFA 合成率的方法之一是在整个培养过程中将培养基成分浓度保持在最佳值,从而提高 PUFA 的生产效率,这样就能成功地将工艺转移到中试和/或工业规模。本研究的目标是开发提高 C. cohnii 生产 PUFA 效率的技术。研究人员进行了多次实验,以测试和微调培养基成分和氧转移因子。单个成分、酵母提取物、海盐和葡萄糖的生物量产量分别为 5.5、0.65 和 0.61 g-g-1。实验评估了 C. cohnii 细胞对机械损伤的敏感性。当使用沟叶叶轮时,小于 276.5 W/m3 的功率输入似乎不会促进细胞破坏。实验表明,所获得的培养条件能有效提高 C. cohnii 的生物量生产率和欧米茄-3 脂肪酸含量。通过使用所应用的方法,最大生物量生产率达到了 8.0 克-升-1-天-1,最高生物量浓度达到了 110 克-升-1。傅立叶变换红外光谱数据显示,在培养过程中,PUFA 的浓度稳步上升。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Harnessing Fermentation by Bacillus and Lactic Acid Bacteria for Enhanced Texture, Flavor, and Nutritional Value in Plant-Based Matrices Characterization of the Key Aroma Compounds of Soybean Flavor in Fermented Soybeans with Bacillus subtilis BJ3-2 by Gene Knockout, Gas Chromatography–Olfactometry–Mass Spectrometry, and Aroma Addition Experiments Development of Volatile Fatty Acid and Methane Production Prediction Model Using Ruminant Nutrition Comparison of Algorithms Solid-State Fermentation of Quinoa Flour: An In-Depth Analysis of Ingredient Characteristics Bioactive Peptides Derived from Whey Proteins for Health and Functional Beverages
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1