Pub Date : 2024-08-09DOI: 10.3390/fermentation10080411
Raquel Fernández-Varela, Anders Holmgaard Hansen, B. A. Svendsen, Elahe Ghanei Moghadam, Arzu Bas, S. K. Kračun, Olivier Harlé, Vera Kuzina Poulsen
This article explores the transformative potential of fermentation in elevating the quality of plant-based matrices to match the desirable attributes of traditional dairy and meat products. As the demand for sustainable products without animal welfare issues increases, fermentation has emerged as a key process to enhance the organoleptic properties and nutritional content of plant-based analogs. This study explores the effect of fermentation when applied to legume matrices, focusing on the resulting texture, flavor, and nutritional value. A selection of Bacillus subtilis, lactic acid bacteria (LAB) strains, and combinations thereof showed potential for improving the aforementioned organoleptic and nutritional characteristics of fermented plant bases. In four different legume-derived matrices, fermentation improved texture, degraded undesirable plant carbohydrates, and removed off-flavor compounds, while producing desirable dairy-associated compounds. The degradation of the undesirable beany off-flavor-causing compound hexanal appears to be a universal phenomenon, as every tested strain as well as their combinations exhibited the capability to decrease the hexanal content, albeit with varying efficiency. Some LAB strains were found to be capable of producing carotenoids and might hence have the potential for tailoring fermented plant-based matrices for specific applications, such as yellow cheese or red meat analogs.
{"title":"Harnessing Fermentation by Bacillus and Lactic Acid Bacteria for Enhanced Texture, Flavor, and Nutritional Value in Plant-Based Matrices","authors":"Raquel Fernández-Varela, Anders Holmgaard Hansen, B. A. Svendsen, Elahe Ghanei Moghadam, Arzu Bas, S. K. Kračun, Olivier Harlé, Vera Kuzina Poulsen","doi":"10.3390/fermentation10080411","DOIUrl":"https://doi.org/10.3390/fermentation10080411","url":null,"abstract":"This article explores the transformative potential of fermentation in elevating the quality of plant-based matrices to match the desirable attributes of traditional dairy and meat products. As the demand for sustainable products without animal welfare issues increases, fermentation has emerged as a key process to enhance the organoleptic properties and nutritional content of plant-based analogs. This study explores the effect of fermentation when applied to legume matrices, focusing on the resulting texture, flavor, and nutritional value. A selection of Bacillus subtilis, lactic acid bacteria (LAB) strains, and combinations thereof showed potential for improving the aforementioned organoleptic and nutritional characteristics of fermented plant bases. In four different legume-derived matrices, fermentation improved texture, degraded undesirable plant carbohydrates, and removed off-flavor compounds, while producing desirable dairy-associated compounds. The degradation of the undesirable beany off-flavor-causing compound hexanal appears to be a universal phenomenon, as every tested strain as well as their combinations exhibited the capability to decrease the hexanal content, albeit with varying efficiency. Some LAB strains were found to be capable of producing carotenoids and might hence have the potential for tailoring fermented plant-based matrices for specific applications, such as yellow cheese or red meat analogs.","PeriodicalId":507249,"journal":{"name":"Fermentation","volume":"22 18","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-08-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141925447","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-08-08DOI: 10.3390/fermentation10080409
Zhaofeng Chen, Yongjun Wu, Shuoqiu Tong, Jing Jin, Lincheng Zhang, Chen Li, Qibo Tan, Feng Wen, Yi Tao
Soybean flavor is considered to be essential for the aroma quality of fermented soybeans (FS) with Bacillus subtilis BJ3-2 (BJ3-2) at 37 °C. However, the key aroma compounds of the soybean flavor must be further elucidated. In this study, two candidate genes (sdaAA and katX) of BJ3-2 involved in the control of soybean flavor production were screened using prior multi-omics data. FS samples with BJ3-2, BJ3-2ΔsdaAA, BJ3-2ΔkatX, and BJ3-2ΔsdaAAΔkatX were analyzed by quantitative descriptive sensory analysis (QDA), gas chromatography–olfactometry–mass spectrometry (GC-O-MS), relative odor activity values (ROAV), and aroma addition experiments. The QDA revealed that the aroma profile of the soybean flavor in FS consisted of “sweaty”, “smoky”, “beany”, “roasted”, and “sweet” attributes. A total of 20 aroma-active compounds were detected, and 13 of them with ROAV > 1 were identified as key aroma compounds. Moreover, aroma addition experiments were conducted to further confirm the key aroma compounds of soybean flavor. Among them, 2-methylbutyric acid, 2,3,5-trimethylpyrazine, and guaiacol contributed higher aroma intensity values and ROAV, resulting in “sweaty”, “roasted”, and “smoky” attributes of soybean flavor in FS, respectively, while 1-octen-3-ol was associated with the “beany” attribute. These findings provide novel insights into the aroma attributes of soybean flavor in FS and a new strategy for revealing the key aroma compounds in fermented foods.
{"title":"Characterization of the Key Aroma Compounds of Soybean Flavor in Fermented Soybeans with Bacillus subtilis BJ3-2 by Gene Knockout, Gas Chromatography–Olfactometry–Mass Spectrometry, and Aroma Addition Experiments","authors":"Zhaofeng Chen, Yongjun Wu, Shuoqiu Tong, Jing Jin, Lincheng Zhang, Chen Li, Qibo Tan, Feng Wen, Yi Tao","doi":"10.3390/fermentation10080409","DOIUrl":"https://doi.org/10.3390/fermentation10080409","url":null,"abstract":"Soybean flavor is considered to be essential for the aroma quality of fermented soybeans (FS) with Bacillus subtilis BJ3-2 (BJ3-2) at 37 °C. However, the key aroma compounds of the soybean flavor must be further elucidated. In this study, two candidate genes (sdaAA and katX) of BJ3-2 involved in the control of soybean flavor production were screened using prior multi-omics data. FS samples with BJ3-2, BJ3-2ΔsdaAA, BJ3-2ΔkatX, and BJ3-2ΔsdaAAΔkatX were analyzed by quantitative descriptive sensory analysis (QDA), gas chromatography–olfactometry–mass spectrometry (GC-O-MS), relative odor activity values (ROAV), and aroma addition experiments. The QDA revealed that the aroma profile of the soybean flavor in FS consisted of “sweaty”, “smoky”, “beany”, “roasted”, and “sweet” attributes. A total of 20 aroma-active compounds were detected, and 13 of them with ROAV > 1 were identified as key aroma compounds. Moreover, aroma addition experiments were conducted to further confirm the key aroma compounds of soybean flavor. Among them, 2-methylbutyric acid, 2,3,5-trimethylpyrazine, and guaiacol contributed higher aroma intensity values and ROAV, resulting in “sweaty”, “roasted”, and “smoky” attributes of soybean flavor in FS, respectively, while 1-octen-3-ol was associated with the “beany” attribute. These findings provide novel insights into the aroma attributes of soybean flavor in FS and a new strategy for revealing the key aroma compounds in fermented foods.","PeriodicalId":507249,"journal":{"name":"Fermentation","volume":"16 12","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141928330","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-08-08DOI: 10.3390/fermentation10080410
Myungsun Park, Sangbuem Cho, Eunjeong Jeon, Nag-Jin Choi
(1) Background: This study explores the correlation between volatile fatty acid (VFA) concentrations and methanogenesis in ruminants, focusing on how the nutritional composition of their diets affects these processes. (2) Methods: We developed predictive models using multiple linear regression, artificial neural networks, and k-nearest neighbor algorithms. The models are based on data extracted from 31 research papers and 16 ruminal in vitro fermentation tests to predict VFA concentrations from nutrient intake. Methane production estimates were derived by converting and clustering these predicted VFA values into molar ratios. (3) Results: This study found that acetate concentrations correlate significantly with neutral detergent fiber intake. Conversely, propionate and butyrate concentrations are highly dependent on dry matter intake. There was a notable correlation between methane production and the concentrations of acetate and butyrate. Increases in neutral detergent fiber intake were associated with higher levels of acetate, butyrate, and methane production. Among the three methods, the k-nearest neighbor algorithm performed best in terms of statistical fitting. (4) Conclusions: It is vital to determine the optimal intake levels of neutral detergent fiber to minimize methane emissions and reduce energy loss in ruminants. The predictive accuracy of VFA and methane models can be enhanced through experimental data collected from diverse environmental conditions, which will aid in determining optimal VFA and methane levels.
{"title":"Development of Volatile Fatty Acid and Methane Production Prediction Model Using Ruminant Nutrition Comparison of Algorithms","authors":"Myungsun Park, Sangbuem Cho, Eunjeong Jeon, Nag-Jin Choi","doi":"10.3390/fermentation10080410","DOIUrl":"https://doi.org/10.3390/fermentation10080410","url":null,"abstract":"(1) Background: This study explores the correlation between volatile fatty acid (VFA) concentrations and methanogenesis in ruminants, focusing on how the nutritional composition of their diets affects these processes. (2) Methods: We developed predictive models using multiple linear regression, artificial neural networks, and k-nearest neighbor algorithms. The models are based on data extracted from 31 research papers and 16 ruminal in vitro fermentation tests to predict VFA concentrations from nutrient intake. Methane production estimates were derived by converting and clustering these predicted VFA values into molar ratios. (3) Results: This study found that acetate concentrations correlate significantly with neutral detergent fiber intake. Conversely, propionate and butyrate concentrations are highly dependent on dry matter intake. There was a notable correlation between methane production and the concentrations of acetate and butyrate. Increases in neutral detergent fiber intake were associated with higher levels of acetate, butyrate, and methane production. Among the three methods, the k-nearest neighbor algorithm performed best in terms of statistical fitting. (4) Conclusions: It is vital to determine the optimal intake levels of neutral detergent fiber to minimize methane emissions and reduce energy loss in ruminants. The predictive accuracy of VFA and methane models can be enhanced through experimental data collected from diverse environmental conditions, which will aid in determining optimal VFA and methane levels.","PeriodicalId":507249,"journal":{"name":"Fermentation","volume":"38 20","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141928379","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-07-16DOI: 10.3390/fermentation10070360
Ophélie Gautheron, L. Nyhan, Arianna Ressa, M. G. Torreiro, Ali Zein Alabiden Tlais, C. Cappello, Marco Gobbetti, A. Hammer, E. Zannini, Elke K. Arendt, A. Sahin
Plant protein ingredients are gaining attention for human nutrition, yet they differ significantly from animal proteins in functionality and nutrition. Fungal solid-state fermentation (SSF) can modulate the composition and functionality, increasing their applicability in foods. Quinoa flour (QF) served as a substrate for Aspergillus oryzae and Rhizopus oligosporus, resulting in two fermented ingredients (QFA and QFR) with different nutritional, functional, and aroma characteristics. A higher increase in protein (+35%) and nitrogen (+24%) was observed in the QFA, while fat was predominantly increased in the QFR (+78%). Fermentable oligo-, di-, monosaccharides and polyols (FODMAPs) decreased in the QFR but increased in the QFA due to polyol production. Metabolomic analysis revealed higher lactic acid concentrations in the QFA, and higher citric, malic, and fumaric acid contents in the QFR. The SSF reduced most antinutrients, while R. oligosporus produced saponins. Olfactometry showed the development of fruity ester compounds and a decrease in metallic and cardboard aromas. Both ingredients showed an enhanced water-holding capacity, with the QFA also demonstrating an increased oil-holding capacity. Complex formation increased the particle size, reduced the solubility, and decreased the foaming properties. Mycelium production darkened the ingredients, with the QFR having a higher differential colour index. This study highlights the potential of SSF to produce ingredients with improved nutritional, sensory, and functional properties.
{"title":"Solid-State Fermentation of Quinoa Flour: An In-Depth Analysis of Ingredient Characteristics","authors":"Ophélie Gautheron, L. Nyhan, Arianna Ressa, M. G. Torreiro, Ali Zein Alabiden Tlais, C. Cappello, Marco Gobbetti, A. Hammer, E. Zannini, Elke K. Arendt, A. Sahin","doi":"10.3390/fermentation10070360","DOIUrl":"https://doi.org/10.3390/fermentation10070360","url":null,"abstract":"Plant protein ingredients are gaining attention for human nutrition, yet they differ significantly from animal proteins in functionality and nutrition. Fungal solid-state fermentation (SSF) can modulate the composition and functionality, increasing their applicability in foods. Quinoa flour (QF) served as a substrate for Aspergillus oryzae and Rhizopus oligosporus, resulting in two fermented ingredients (QFA and QFR) with different nutritional, functional, and aroma characteristics. A higher increase in protein (+35%) and nitrogen (+24%) was observed in the QFA, while fat was predominantly increased in the QFR (+78%). Fermentable oligo-, di-, monosaccharides and polyols (FODMAPs) decreased in the QFR but increased in the QFA due to polyol production. Metabolomic analysis revealed higher lactic acid concentrations in the QFA, and higher citric, malic, and fumaric acid contents in the QFR. The SSF reduced most antinutrients, while R. oligosporus produced saponins. Olfactometry showed the development of fruity ester compounds and a decrease in metallic and cardboard aromas. Both ingredients showed an enhanced water-holding capacity, with the QFA also demonstrating an increased oil-holding capacity. Complex formation increased the particle size, reduced the solubility, and decreased the foaming properties. Mycelium production darkened the ingredients, with the QFR having a higher differential colour index. This study highlights the potential of SSF to produce ingredients with improved nutritional, sensory, and functional properties.","PeriodicalId":507249,"journal":{"name":"Fermentation","volume":"6 9","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-07-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141640834","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-07-16DOI: 10.3390/fermentation10070357
Roxana-Andreea Munteanu-Ichim, C. Canja, M. Lupu, Carmen-Liliana Bădărău, F. Matei
Yoghurt is one of the most consumed and studied dairy products, with proven functional effects on the human body. This review discusses the functional properties of traditional yoghurt products in comparison with different other yoghurts enriched with natural bioactive compounds like bee products, aromatic plants, fruit, vegetables, extracts, edible flowers, mushrooms, and high protein ingredients. The food industry aims to enhance the nutritional profile of final products, recognising the potential value they bring. Yoghurt, acknowledged as a functional food, has garnered significant attention globally in terms of production and consumption. Incorporating flavours through essences, fruit, fruit extracts, and honey is considered a preferable alternative to artificial flavours for innovating new dairy products. While the review underscores the positive properties of natural additives, it also addresses the possible changes in physicochemical properties and storage stability when yoghurt is enriched beyond the basic elements. A compelling synthesis of the data reveals the remarkable finding that the majority of functional yoghurts incorporate bee products. In recent years, the dairy industry has seen a rise in combining probiotics and functional foods, especially with the development of probiotic functional yoghurts.
{"title":"Tradition and Innovation in Yoghurt from a Functional Perspective—A Review","authors":"Roxana-Andreea Munteanu-Ichim, C. Canja, M. Lupu, Carmen-Liliana Bădărău, F. Matei","doi":"10.3390/fermentation10070357","DOIUrl":"https://doi.org/10.3390/fermentation10070357","url":null,"abstract":"Yoghurt is one of the most consumed and studied dairy products, with proven functional effects on the human body. This review discusses the functional properties of traditional yoghurt products in comparison with different other yoghurts enriched with natural bioactive compounds like bee products, aromatic plants, fruit, vegetables, extracts, edible flowers, mushrooms, and high protein ingredients. The food industry aims to enhance the nutritional profile of final products, recognising the potential value they bring. Yoghurt, acknowledged as a functional food, has garnered significant attention globally in terms of production and consumption. Incorporating flavours through essences, fruit, fruit extracts, and honey is considered a preferable alternative to artificial flavours for innovating new dairy products. While the review underscores the positive properties of natural additives, it also addresses the possible changes in physicochemical properties and storage stability when yoghurt is enriched beyond the basic elements. A compelling synthesis of the data reveals the remarkable finding that the majority of functional yoghurts incorporate bee products. In recent years, the dairy industry has seen a rise in combining probiotics and functional foods, especially with the development of probiotic functional yoghurts.","PeriodicalId":507249,"journal":{"name":"Fermentation","volume":"5 5","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-07-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141640965","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-07-16DOI: 10.3390/fermentation10070358
Yiling Wen, Ping Wang, Zhiwei Cao, Liang Li, Zhendong Liu
To determine the influence of pig type (Landrace, Wujin, or Tibetan fragrant) on the quality of Xuanwei ham, we measured the ham pH, color, fat content, and moisture content; used an E-nose (a device intended to detect odors or flavors); and analyzed flavoring substances using headspace solid-phase microextraction–gas chromatography, free amino acids using high-performance liquid chromatography, and microbial diversity using high-throughput sequencing. The ham types differed from each other in these attributes. The moisture and fat contents of Landrace pig ham were significantly lower than those of the other pig types, the brightness values of the Tibetan fragrant pig ham were significantly lower than those of the other pig types, and the redness values of the Landrace and Wujin pig hams were significantly higher than those of the Tibetan fragrant pig ham. The essential amino acid contents, e-wind odor response values, and volatile flavor substances of Wujin pig hams were significantly higher than those of the Tibetan fragrant pig ham, and the relative aldehyde contents of Wujin pig ham were significantly higher than those of the other pig types. The dominant microbial phyla in each ham type were assessed based on the species commonness, composition, and diversity and included taxa such as Actinobacteria and Ascomycetes and thick-walled bacteria such as Orphanomyces, Grass Spirochaetes, and Pseudoalteromonas. The microbial diversity and richness were the greatest in the Wujin pig ham. Of the three pigs, we conclude that the Wujin pig produces the best Xuanwei ham.
{"title":"An Evaluation of Pig Type Regarding the Quality of Xuanwei Ham","authors":"Yiling Wen, Ping Wang, Zhiwei Cao, Liang Li, Zhendong Liu","doi":"10.3390/fermentation10070358","DOIUrl":"https://doi.org/10.3390/fermentation10070358","url":null,"abstract":"To determine the influence of pig type (Landrace, Wujin, or Tibetan fragrant) on the quality of Xuanwei ham, we measured the ham pH, color, fat content, and moisture content; used an E-nose (a device intended to detect odors or flavors); and analyzed flavoring substances using headspace solid-phase microextraction–gas chromatography, free amino acids using high-performance liquid chromatography, and microbial diversity using high-throughput sequencing. The ham types differed from each other in these attributes. The moisture and fat contents of Landrace pig ham were significantly lower than those of the other pig types, the brightness values of the Tibetan fragrant pig ham were significantly lower than those of the other pig types, and the redness values of the Landrace and Wujin pig hams were significantly higher than those of the Tibetan fragrant pig ham. The essential amino acid contents, e-wind odor response values, and volatile flavor substances of Wujin pig hams were significantly higher than those of the Tibetan fragrant pig ham, and the relative aldehyde contents of Wujin pig ham were significantly higher than those of the other pig types. The dominant microbial phyla in each ham type were assessed based on the species commonness, composition, and diversity and included taxa such as Actinobacteria and Ascomycetes and thick-walled bacteria such as Orphanomyces, Grass Spirochaetes, and Pseudoalteromonas. The microbial diversity and richness were the greatest in the Wujin pig ham. Of the three pigs, we conclude that the Wujin pig produces the best Xuanwei ham.","PeriodicalId":507249,"journal":{"name":"Fermentation","volume":"24 12","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-07-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141644149","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-07-16DOI: 10.3390/fermentation10070359
Margarita Saubenova, Y. Oleinikova, Alexander Rapoport, Sviatoslav Maksimovich, Zh N. Yermekbay, E. Khamedova
Milk serves as a crucial source of natural bioactive compounds essential for human nutrition and health. The increased production of high-protein dairy products is a source of whey—a valuable secondary product that, along with other biologically valuable substances, contains significant amounts of whey proteins and is often irrationally used or not utilized at all. Acid whey, containing almost all whey proteins and approximately one-quarter of casein, presents a valuable raw material for generating peptides with potential health benefits. These peptides exhibit properties such as antioxidant, antimicrobial, anti-inflammatory, anticarcinogenic, antihypertensive, antithrombotic, opioid, mineral-binding, and growth-stimulating activities, contributing to improved human immunity and the treatment of chronic diseases. Bioactive peptides can be produced by enzymatic hydrolysis using a variety of proteolytic enzymes, plant extracts, and microbial fermentation. With the participation of plant enzymes, peptides that inhibit angiotensin-converting enzyme are most often obtained. The use of enzymatic hydrolysis and microbial fermentation by lactic acid bacteria (LAB) produces more diverse peptides from different whey proteins with α-lactalbumin and β-lactoglobulin as the main targets. The resulting peptides of varying lengths often have antimicrobial, antioxidant, antihypertensive, and antidiabetic characteristics. Peptides produced by LAB are promising for use in medicine and the food industry as antioxidants and biopreservatives. Other beneficial properties of LAB-produced, whey-derived peptides have not yet been fully explored and remain to be studied. The development of whey drinks rich in bioactive peptides and based on the LAB proteolytic activity is underway. The strain specificity of LAB proteases opens up broad prospects for combining microorganisms to obtain products with the widest range of beneficial properties.
{"title":"Bioactive Peptides Derived from Whey Proteins for Health and Functional Beverages","authors":"Margarita Saubenova, Y. Oleinikova, Alexander Rapoport, Sviatoslav Maksimovich, Zh N. Yermekbay, E. Khamedova","doi":"10.3390/fermentation10070359","DOIUrl":"https://doi.org/10.3390/fermentation10070359","url":null,"abstract":"Milk serves as a crucial source of natural bioactive compounds essential for human nutrition and health. The increased production of high-protein dairy products is a source of whey—a valuable secondary product that, along with other biologically valuable substances, contains significant amounts of whey proteins and is often irrationally used or not utilized at all. Acid whey, containing almost all whey proteins and approximately one-quarter of casein, presents a valuable raw material for generating peptides with potential health benefits. These peptides exhibit properties such as antioxidant, antimicrobial, anti-inflammatory, anticarcinogenic, antihypertensive, antithrombotic, opioid, mineral-binding, and growth-stimulating activities, contributing to improved human immunity and the treatment of chronic diseases. Bioactive peptides can be produced by enzymatic hydrolysis using a variety of proteolytic enzymes, plant extracts, and microbial fermentation. With the participation of plant enzymes, peptides that inhibit angiotensin-converting enzyme are most often obtained. The use of enzymatic hydrolysis and microbial fermentation by lactic acid bacteria (LAB) produces more diverse peptides from different whey proteins with α-lactalbumin and β-lactoglobulin as the main targets. The resulting peptides of varying lengths often have antimicrobial, antioxidant, antihypertensive, and antidiabetic characteristics. Peptides produced by LAB are promising for use in medicine and the food industry as antioxidants and biopreservatives. Other beneficial properties of LAB-produced, whey-derived peptides have not yet been fully explored and remain to be studied. The development of whey drinks rich in bioactive peptides and based on the LAB proteolytic activity is underway. The strain specificity of LAB proteases opens up broad prospects for combining microorganisms to obtain products with the widest range of beneficial properties.","PeriodicalId":507249,"journal":{"name":"Fermentation","volume":"3 4","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-07-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141640948","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-07-15DOI: 10.3390/fermentation10070356
Jae Hee Jeong, Sunhyun Park, Mi Jang, Keun-sung Kim
Vibrio cholerae and Vibrio parahaemolyticus are common pathogens linked to human gastroenteritis, particularly in seafood like shrimp. This study investigated the impact of lactic acid bacteria on V. cholerae and V. parahaemolyticus regarding the production of cadaverine, a concerning compound. V. cholerae NCCP 13589 and V. parahaemolyticus ATCC 27969 were significant producers of amines in experiments conducted using white-leg shrimp (Litopenaeus vannamei) and lysine decarboxylase broth. Notably, the Lactiplantibacillus plantarum NCIMB 6105 and Leuconostoc mesenteroides ATCC 10830 lactic acid bacteria strains demonstrated a pronounced antagonistic effect on the production of biogenic amines by these food-borne pathogenic bacteria. The presence of lactic acid bacteria led to a substantial reduction in cadaverine production in the lysine decarboxylase broth and shrimp extract. The co-culture of two lactobacilli species reduced the cadaverine production in V. cholerae and V. parahaemolyticus by approximately 77 and 80%, respectively. Consequently, the favorable influence of lactic acid bacteria in curbing cadaverine production by food-borne pathogens presents clear advantages for the food industry. Thus, effectively managing these pathogens could prove pivotal in controlling the biogenic amine levels in shrimp.
{"title":"Evaluating the Antagonistic Activity of Lactic Acid Bacteria in Cadaverine Production by Vibrio Strains during Co-Culture","authors":"Jae Hee Jeong, Sunhyun Park, Mi Jang, Keun-sung Kim","doi":"10.3390/fermentation10070356","DOIUrl":"https://doi.org/10.3390/fermentation10070356","url":null,"abstract":"Vibrio cholerae and Vibrio parahaemolyticus are common pathogens linked to human gastroenteritis, particularly in seafood like shrimp. This study investigated the impact of lactic acid bacteria on V. cholerae and V. parahaemolyticus regarding the production of cadaverine, a concerning compound. V. cholerae NCCP 13589 and V. parahaemolyticus ATCC 27969 were significant producers of amines in experiments conducted using white-leg shrimp (Litopenaeus vannamei) and lysine decarboxylase broth. Notably, the Lactiplantibacillus plantarum NCIMB 6105 and Leuconostoc mesenteroides ATCC 10830 lactic acid bacteria strains demonstrated a pronounced antagonistic effect on the production of biogenic amines by these food-borne pathogenic bacteria. The presence of lactic acid bacteria led to a substantial reduction in cadaverine production in the lysine decarboxylase broth and shrimp extract. The co-culture of two lactobacilli species reduced the cadaverine production in V. cholerae and V. parahaemolyticus by approximately 77 and 80%, respectively. Consequently, the favorable influence of lactic acid bacteria in curbing cadaverine production by food-borne pathogens presents clear advantages for the food industry. Thus, effectively managing these pathogens could prove pivotal in controlling the biogenic amine levels in shrimp.","PeriodicalId":507249,"journal":{"name":"Fermentation","volume":"30 6","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141646666","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-07-13DOI: 10.3390/fermentation10070354
S. Alrdahe, Z. Moussa, Yasmene F. Alanazi, Haifa Alrdahi, W. Saber, D. B. E. Darwish
This study showcases a promising approach to sustainably unlocking plant biomass residues by combining biodegradation with artificial intelligence to optimize the process. Specifically, we utilized the definitive screening design (DSD) and artificial neural networks (ANNs) to optimize the degradation of common bean biomass by the endophytic fungus Trichoderma asperellum WNZ-21. The optimized process yielded a fungal hydrolysate rich in 12 essential and non-essential amino acids, totaling 18,298.14 μg/g biomass. GC-MS analysis revealed four potential novel components not previously reported in microbial filtrates or plants and seven components exclusive to plant sources but not reported in microbial filtrates. The hydrolysate contained phenolic, flavonoid, and tannin compounds, as confirmed by FT-IR analysis. High-resolution transmission electron microscopy depicted structures resembling amino acid micelles and potential protein aggregates. The hydrolysate exhibited antioxidant, antibacterial, and anticancer properties and innovatively induced apoptotic modulation in the MCF7 cancer cell line. These findings underscore the potential of ANN-optimized fermentation for various applications, particularly in anticancer medicine due to its unique composition and bioactivities. The integration of the DSD and ANNs presents a novel technique for biomass biodegradation, warranting the valorization of plant biomass and suggesting a further exploration of the new components in the fungal hydrolysate. This approach represents the basic concept for exploring other biomass sources and in vivo studies.
{"title":"Optimization of Biodegradation of Common Bean Biomass for Fermentation Using Trichoderma asperellum WNZ-21 and Artificial Neural Networks","authors":"S. Alrdahe, Z. Moussa, Yasmene F. Alanazi, Haifa Alrdahi, W. Saber, D. B. E. Darwish","doi":"10.3390/fermentation10070354","DOIUrl":"https://doi.org/10.3390/fermentation10070354","url":null,"abstract":"This study showcases a promising approach to sustainably unlocking plant biomass residues by combining biodegradation with artificial intelligence to optimize the process. Specifically, we utilized the definitive screening design (DSD) and artificial neural networks (ANNs) to optimize the degradation of common bean biomass by the endophytic fungus Trichoderma asperellum WNZ-21. The optimized process yielded a fungal hydrolysate rich in 12 essential and non-essential amino acids, totaling 18,298.14 μg/g biomass. GC-MS analysis revealed four potential novel components not previously reported in microbial filtrates or plants and seven components exclusive to plant sources but not reported in microbial filtrates. The hydrolysate contained phenolic, flavonoid, and tannin compounds, as confirmed by FT-IR analysis. High-resolution transmission electron microscopy depicted structures resembling amino acid micelles and potential protein aggregates. The hydrolysate exhibited antioxidant, antibacterial, and anticancer properties and innovatively induced apoptotic modulation in the MCF7 cancer cell line. These findings underscore the potential of ANN-optimized fermentation for various applications, particularly in anticancer medicine due to its unique composition and bioactivities. The integration of the DSD and ANNs presents a novel technique for biomass biodegradation, warranting the valorization of plant biomass and suggesting a further exploration of the new components in the fungal hydrolysate. This approach represents the basic concept for exploring other biomass sources and in vivo studies.","PeriodicalId":507249,"journal":{"name":"Fermentation","volume":"45 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-07-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141652360","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-07-12DOI: 10.3390/fermentation10070351
Marilisa Giavalisco, Emanuela Lavanga, A. Ricciardi, T. Zotta
Table olives are widely produced and consumed in the Mediterranean area. The production of table olives is mainly based on spontaneous fermentations, which may have several drawbacks (e.g., the development of undesirable microorganisms; organoleptic defects) compared to fermentative processes driven by starter cultures (typically lactic acid bacteria, yeasts, or their combinations). Studies on the effect of starter cultures have been mainly focused on some technological traits (e.g., acidifying capability, the degradation of phenolic compounds, metabolite production) and, to a lesser extent, on the dynamics of olive microbiota during fermentation. Recently, the application of Amplicon Targeted—High-Throughput Sequencing (AT–HTS) has enabled improvement of the knowledge on the composition and evolution of microbial communities during fermentations, including the role of starter cultures. The AT–HTS approaches used so far, however, have several constraints (e.g., poor investigation of mycobiota and metabolically active microorganisms) that do not allow a full understanding of the complex microbial interactions occurring in fermented olives. The aim of this review is to provide insights into the role of starter cultures in fermented olives and highlight the need to apply, as for other fermented foods, integrated “omics” approaches to predict and exploit their metabolic potential to improve the final properties of products.
{"title":"Starter Cultures for the Production of Fermented Table Olives: Current Status and Future Perspectives","authors":"Marilisa Giavalisco, Emanuela Lavanga, A. Ricciardi, T. Zotta","doi":"10.3390/fermentation10070351","DOIUrl":"https://doi.org/10.3390/fermentation10070351","url":null,"abstract":"Table olives are widely produced and consumed in the Mediterranean area. The production of table olives is mainly based on spontaneous fermentations, which may have several drawbacks (e.g., the development of undesirable microorganisms; organoleptic defects) compared to fermentative processes driven by starter cultures (typically lactic acid bacteria, yeasts, or their combinations). Studies on the effect of starter cultures have been mainly focused on some technological traits (e.g., acidifying capability, the degradation of phenolic compounds, metabolite production) and, to a lesser extent, on the dynamics of olive microbiota during fermentation. Recently, the application of Amplicon Targeted—High-Throughput Sequencing (AT–HTS) has enabled improvement of the knowledge on the composition and evolution of microbial communities during fermentations, including the role of starter cultures. The AT–HTS approaches used so far, however, have several constraints (e.g., poor investigation of mycobiota and metabolically active microorganisms) that do not allow a full understanding of the complex microbial interactions occurring in fermented olives. The aim of this review is to provide insights into the role of starter cultures in fermented olives and highlight the need to apply, as for other fermented foods, integrated “omics” approaches to predict and exploit their metabolic potential to improve the final properties of products.","PeriodicalId":507249,"journal":{"name":"Fermentation","volume":"45 4","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-07-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141653211","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}