Efficiency of Volatile Corrosion Inhibitors in the Presence of n-Heptane: An Experimental and Molecular Simulation Study

IF 1.1 4区 材料科学 Q4 MATERIALS SCIENCE, MULTIDISCIPLINARY Corrosion Pub Date : 2024-04-10 DOI:10.5006/4531
Maryam Eslami, Sumit Sharma, David Young, Marc Singer
{"title":"Efficiency of Volatile Corrosion Inhibitors in the Presence of n-Heptane: An Experimental and Molecular Simulation Study","authors":"Maryam Eslami, Sumit Sharma, David Young, Marc Singer","doi":"10.5006/4531","DOIUrl":null,"url":null,"abstract":"\n Volatile corrosion inhibitors (VCIs), specifically formulations based on thiols and amines, can be used to mitigate top-of-the-line corrosion (TLC) that arises during the transportation of wet gas through transmission pipelines. Nevertheless, the VCI inhibition efficiency can be compromised by the presence of condensable hydrocarbon phases. In this research, the inhibition efficiency of two thiol compounds (decanethiol and hexanethiol) and three combinations of VCIs for TLC scenarios, both in the presence and absence of n-heptane, representing a condensing hydrocarbon phase were studied. The results proved the inhibition efficiency of thiols in a water-only condensing environment, with effectiveness increasing with the alkyl tail length. Conversely, in a water/n-heptane co-condensing environment, a reversed trend was observed, where hexanethiol exhibited higher corrosion inhibition efficiency compared to decanethiol. Molecular simulation results indicated a synergistic adsorption behavior when the alkane was of a similar length as the alkyl tails of the inhibitors, leading to the incorporation of alkane molecules with the inhibitor molecules. A mixture of thiols (decanethiol and hexanethiol) and two mixtures of thiol and amines (decanethiol and diethylamine/t-butylamine) were also considered in both water-only and water/n-heptane co-condensing environments. In the presence of n-heptane, only the thiol mixture, featuring molecules with different tail lengths, demonstrated high inhibition efficiency. This behavior was attributed to the superior inhibition efficiency provided by thiol-based molecules with a shorter alkyl tail (hexanethiol) in the presence of n-heptane. Additionally, the results revealed that the mixtures of decanethiol and amines did not enhance corrosion inhibition in the presence of n-heptane within the system.","PeriodicalId":10717,"journal":{"name":"Corrosion","volume":null,"pages":null},"PeriodicalIF":1.1000,"publicationDate":"2024-04-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Corrosion","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.5006/4531","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Volatile corrosion inhibitors (VCIs), specifically formulations based on thiols and amines, can be used to mitigate top-of-the-line corrosion (TLC) that arises during the transportation of wet gas through transmission pipelines. Nevertheless, the VCI inhibition efficiency can be compromised by the presence of condensable hydrocarbon phases. In this research, the inhibition efficiency of two thiol compounds (decanethiol and hexanethiol) and three combinations of VCIs for TLC scenarios, both in the presence and absence of n-heptane, representing a condensing hydrocarbon phase were studied. The results proved the inhibition efficiency of thiols in a water-only condensing environment, with effectiveness increasing with the alkyl tail length. Conversely, in a water/n-heptane co-condensing environment, a reversed trend was observed, where hexanethiol exhibited higher corrosion inhibition efficiency compared to decanethiol. Molecular simulation results indicated a synergistic adsorption behavior when the alkane was of a similar length as the alkyl tails of the inhibitors, leading to the incorporation of alkane molecules with the inhibitor molecules. A mixture of thiols (decanethiol and hexanethiol) and two mixtures of thiol and amines (decanethiol and diethylamine/t-butylamine) were also considered in both water-only and water/n-heptane co-condensing environments. In the presence of n-heptane, only the thiol mixture, featuring molecules with different tail lengths, demonstrated high inhibition efficiency. This behavior was attributed to the superior inhibition efficiency provided by thiol-based molecules with a shorter alkyl tail (hexanethiol) in the presence of n-heptane. Additionally, the results revealed that the mixtures of decanethiol and amines did not enhance corrosion inhibition in the presence of n-heptane within the system.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
正庚烷存在时挥发性缓蚀剂的效率:实验与分子模拟研究
挥发性缓蚀剂(VCI),特别是基于硫醇和胺的配方,可用于减轻湿气通过输气管道运输过程中产生的顶部腐蚀(TLC)。然而,VCI 的抑制效率可能会因为可凝结烃相的存在而受到影响。在这项研究中,研究了两种硫醇化合物(癸硫醇和己硫醇)和三种 VCI 组合在有或没有代表冷凝烃相的正庚烷的情况下对 TLC 的抑制效率。结果表明,硫醇在纯水冷凝环境中的抑制效率随着烷基尾长度的增加而提高。相反,在水/正庚烷共冷凝环境中,则出现了相反的趋势,与癸硫醇相比,己硫醇的缓蚀效率更高。分子模拟结果表明,当烷烃的长度与抑制剂的烷基尾部相似时,会产生协同吸附行为,从而导致烷烃分子与抑制剂分子结合。在纯水和水/正庚烷共凝环境中,还考虑了硫醇混合物(癸硫醇和己硫醇)以及硫醇和胺的两种混合物(癸硫醇和二乙胺/叔丁胺)。在正庚烷存在的情况下,只有硫醇混合物(具有不同尾长的分子)表现出较高的抑制效率。这种行为归因于烷基尾部较短的硫醇基分子(己硫醇)在正庚烷存在时具有更高的抑制效率。此外,研究结果表明,当系统中存在正庚烷时,癸硫醇和胺的混合物并不能增强缓蚀效果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Corrosion
Corrosion MATERIALS SCIENCE, MULTIDISCIPLINARY-METALLURGY & METALLURGICAL ENGINEERING
CiteScore
2.80
自引率
12.50%
发文量
97
审稿时长
3 months
期刊介绍: CORROSION is the premier research journal featuring peer-reviewed technical articles from the world’s top researchers and provides a permanent record of progress in the science and technology of corrosion prevention and control. The scope of the journal includes the latest developments in areas of corrosion metallurgy, mechanisms, predictors, cracking (sulfide stress, stress corrosion, hydrogen-induced), passivation, and CO2 corrosion. 70+ years and over 7,100 peer-reviewed articles with advances in corrosion science and engineering have been published in CORROSION. The journal publishes seven article types – original articles, invited critical reviews, technical notes, corrosion communications fast-tracked for rapid publication, special research topic issues, research letters of yearly annual conference student poster sessions, and scientific investigations of field corrosion processes. CORROSION, the Journal of Science and Engineering, serves as an important communication platform for academics, researchers, technical libraries, and universities. Articles considered for CORROSION should have significant permanent value and should accomplish at least one of the following objectives: • Contribute awareness of corrosion phenomena, • Advance understanding of fundamental process, and/or • Further the knowledge of techniques and practices used to reduce corrosion.
期刊最新文献
Implications of grout condition on galvanic coupling and hydrogen absorption within post-tensioned bridge tendons constructed with galvanized steel ducts Bimodal trending in corrosion loss of magnesium alloys Corrosion behavior of Cu-Ni-Fe-Mn-Cr alloy in 3.5 wt.% NaCl solution An Investigation of Corrosion Behaviors of Thermally Sprayed Aluminum (TSA) at Elevated Temperatures Under Thermal Insulations and Autoclave Immersion Conditions A stochastic modeling method for three-dimensional corrosion pits of bridge cable wires and its application
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1