Sharanya Sundaramoorthy, Anusha Dakshinamoorthy, Bhaskar L. V. K. S.
{"title":"Phytochemical Characterization and Anticancer Screening of Cladophora goensis and Cladophora glomerata Extracts","authors":"Sharanya Sundaramoorthy, Anusha Dakshinamoorthy, Bhaskar L. V. K. S.","doi":"10.1177/0976500x241235721","DOIUrl":null,"url":null,"abstract":"Background: Cladophora goensis and Cladophora glomerata has been widely identified in the Indian Oceans. Marine algae have been identified as potential pharmacological agents useful in the treatment of diabetes, hypertension, infections, and cancers. Objectives: The present study aimed to evaluate the phytochemicals in C. goensis and C. glomerata using gas chromatography-mass spectroscopy (GC-MS), and to study the molecular interactions with cancer-related proteins using molecular docking techniques. Materials and methods: GC-MS analysis was done using electron impact ionization at 70eV and the data was evaluated using total ion count for compound identification and quantification. AutoDock 4.0 version was used for the molecular docking analysis. Results: The methanolic extracts of algae when subjected to GC-MS analysis, 19 compounds from C. goensis and 11 phytocompounds from C. glomerata were identified. The significant molecular interactions of phytochemicals of C. goensis (6-nitro-3 H-quinazolin-4-one, Isoquinoline, 1,2,3,4-tetrahydro-7-methoxy-2-methyl-8-(phenyl methoxy) and 9-Decen-1-ol, pentafluropropionate) and C. glomerata (phytol, palmitic acid, and octadec-9-enoic acid) against human epidermal growth factor receptor (4WRG), poly (ADP-ribose) polymerase-1 (4UND), human estrogen receptor alpha ligand-binding domain (3ERT), human peroxisome proliferator-activated receptor alpha ligand-binding domain (3VI8), and human topoisomerase (1EJ9) have been demonstrated. Conclusion: The phytochemicals of methanolic extracts of C. goensis and C. glomerata showed potential interactions with cancer-related proteins.","PeriodicalId":16780,"journal":{"name":"Journal of Pharmacology and Pharmacotherapeutics","volume":"2009 20","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-04-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Pharmacology and Pharmacotherapeutics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1177/0976500x241235721","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Background: Cladophora goensis and Cladophora glomerata has been widely identified in the Indian Oceans. Marine algae have been identified as potential pharmacological agents useful in the treatment of diabetes, hypertension, infections, and cancers. Objectives: The present study aimed to evaluate the phytochemicals in C. goensis and C. glomerata using gas chromatography-mass spectroscopy (GC-MS), and to study the molecular interactions with cancer-related proteins using molecular docking techniques. Materials and methods: GC-MS analysis was done using electron impact ionization at 70eV and the data was evaluated using total ion count for compound identification and quantification. AutoDock 4.0 version was used for the molecular docking analysis. Results: The methanolic extracts of algae when subjected to GC-MS analysis, 19 compounds from C. goensis and 11 phytocompounds from C. glomerata were identified. The significant molecular interactions of phytochemicals of C. goensis (6-nitro-3 H-quinazolin-4-one, Isoquinoline, 1,2,3,4-tetrahydro-7-methoxy-2-methyl-8-(phenyl methoxy) and 9-Decen-1-ol, pentafluropropionate) and C. glomerata (phytol, palmitic acid, and octadec-9-enoic acid) against human epidermal growth factor receptor (4WRG), poly (ADP-ribose) polymerase-1 (4UND), human estrogen receptor alpha ligand-binding domain (3ERT), human peroxisome proliferator-activated receptor alpha ligand-binding domain (3VI8), and human topoisomerase (1EJ9) have been demonstrated. Conclusion: The phytochemicals of methanolic extracts of C. goensis and C. glomerata showed potential interactions with cancer-related proteins.