Antonio Di Maria, Lorenzo Bellomo, Fabrizio Billeci, Alfio Cardillo, S. Alaimo, Paolo Ferragina, Alfredo Ferro, A. Pulvirenti
{"title":"A web-based platform for extracting and modeling knowledge from biomedical literature as a labeled graph.","authors":"Antonio Di Maria, Lorenzo Bellomo, Fabrizio Billeci, Alfio Cardillo, S. Alaimo, Paolo Ferragina, Alfredo Ferro, A. Pulvirenti","doi":"10.1093/bioinformatics/btae194","DOIUrl":null,"url":null,"abstract":"MOTIVATION\nThe rapid increase of bio-medical literature makes it harder and harder for scientists to keep pace with the discoveries on which they build their studies. Therefore, computational tools have become more widespread, among which network analysis plays a crucial role in several life-science contexts. Nevertheless, building correct and complete networks about some user-defined biomedical topics on top of the available literature is still challenging.\n\n\nRESULTS\nWe introduce NetMe 2.0, a web-based platform that automatically extracts relevant biomedical entities and their relations from a set of input texts-i.e., in the form of full-text or abstract of PubMed Central's papers, free texts, or PDFs uploaded by users-and models them as a BioMedical Knowledge Graph (BKG). NetMe 2.0 also implements an innovative Retrieval Augmented Generation module (Graph-RAG) that works on top of the relationships modeled by the BKG and allows the distilling of well-formed sentences that explain their content. The experimental results show that NetMe 2.0 can infer comprehensive and reliable biological networks with significant Precision-Recall metrics when compared to state-of-the-art approaches.\n\n\nAVAILABILITY\nhttps://netme.click/.\n\n\nSUPPLEMENTARY INFORMATION\nSupplementary data are available at Bioinformatics.","PeriodicalId":8903,"journal":{"name":"Bioinformatics","volume":null,"pages":null},"PeriodicalIF":4.4000,"publicationDate":"2024-04-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioinformatics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/bioinformatics/btae194","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
MOTIVATION
The rapid increase of bio-medical literature makes it harder and harder for scientists to keep pace with the discoveries on which they build their studies. Therefore, computational tools have become more widespread, among which network analysis plays a crucial role in several life-science contexts. Nevertheless, building correct and complete networks about some user-defined biomedical topics on top of the available literature is still challenging.
RESULTS
We introduce NetMe 2.0, a web-based platform that automatically extracts relevant biomedical entities and their relations from a set of input texts-i.e., in the form of full-text or abstract of PubMed Central's papers, free texts, or PDFs uploaded by users-and models them as a BioMedical Knowledge Graph (BKG). NetMe 2.0 also implements an innovative Retrieval Augmented Generation module (Graph-RAG) that works on top of the relationships modeled by the BKG and allows the distilling of well-formed sentences that explain their content. The experimental results show that NetMe 2.0 can infer comprehensive and reliable biological networks with significant Precision-Recall metrics when compared to state-of-the-art approaches.
AVAILABILITY
https://netme.click/.
SUPPLEMENTARY INFORMATION
Supplementary data are available at Bioinformatics.
期刊介绍:
The leading journal in its field, Bioinformatics publishes the highest quality scientific papers and review articles of interest to academic and industrial researchers. Its main focus is on new developments in genome bioinformatics and computational biology. Two distinct sections within the journal - Discovery Notes and Application Notes- focus on shorter papers; the former reporting biologically interesting discoveries using computational methods, the latter exploring the applications used for experiments.