FuncPEP v2.0: An Updated Database of Functional Short Peptides Translated from Non-Coding RNAs.

IF 3.6 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY Non-Coding RNA Pub Date : 2024-04-09 DOI:10.3390/ncrna10020020
Swati Mohapatra, Anik Banerjee, Paola C. Rausseo, M. Dragomir, G. Manyam, B. Broom, G. Calin
{"title":"FuncPEP v2.0: An Updated Database of Functional Short Peptides Translated from Non-Coding RNAs.","authors":"Swati Mohapatra, Anik Banerjee, Paola C. Rausseo, M. Dragomir, G. Manyam, B. Broom, G. Calin","doi":"10.3390/ncrna10020020","DOIUrl":null,"url":null,"abstract":"Over the past decade, there have been reports of short novel functional peptides (less than 100 aa in length) translated from so-called non-coding RNAs (ncRNAs) that have been characterized using mass spectrometry (MS) and large-scale proteomics studies. Therefore, understanding the bivalent functions of some ncRNAs as transcripts that encode both functional RNAs and short peptides, which we named ncPEPs, will deepen our understanding of biology and disease. In 2020, we published the first database of functional peptides translated from non-coding RNAs-FuncPEP. Herein, we have performed an update including the newly published ncPEPs from the last 3 years along with the categorization of host ncRNAs. FuncPEP v2.0 contains 152 functional ncPEPs, out of which 40 are novel entries. A PubMed search from August 2020 to July 2023 incorporating specific keywords was performed and screened for publications reporting validated functional peptides derived from ncRNAs. We did not observe a significant increase in newly discovered functional ncPEPs, but a steady increase. The novel identified ncPEPs included in the database were characterized by a wide array of molecular and physiological parameters (i.e., types of host ncRNA, species distribution, chromosomal density, distribution of ncRNA length, identification methods, molecular weight, and functional distribution across humans and other species). We consider that, despite the fact that MS can now easily identify ncPEPs, there still are important limitations in proving their functionality.","PeriodicalId":19271,"journal":{"name":"Non-Coding RNA","volume":null,"pages":null},"PeriodicalIF":3.6000,"publicationDate":"2024-04-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Non-Coding RNA","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/ncrna10020020","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Over the past decade, there have been reports of short novel functional peptides (less than 100 aa in length) translated from so-called non-coding RNAs (ncRNAs) that have been characterized using mass spectrometry (MS) and large-scale proteomics studies. Therefore, understanding the bivalent functions of some ncRNAs as transcripts that encode both functional RNAs and short peptides, which we named ncPEPs, will deepen our understanding of biology and disease. In 2020, we published the first database of functional peptides translated from non-coding RNAs-FuncPEP. Herein, we have performed an update including the newly published ncPEPs from the last 3 years along with the categorization of host ncRNAs. FuncPEP v2.0 contains 152 functional ncPEPs, out of which 40 are novel entries. A PubMed search from August 2020 to July 2023 incorporating specific keywords was performed and screened for publications reporting validated functional peptides derived from ncRNAs. We did not observe a significant increase in newly discovered functional ncPEPs, but a steady increase. The novel identified ncPEPs included in the database were characterized by a wide array of molecular and physiological parameters (i.e., types of host ncRNA, species distribution, chromosomal density, distribution of ncRNA length, identification methods, molecular weight, and functional distribution across humans and other species). We consider that, despite the fact that MS can now easily identify ncPEPs, there still are important limitations in proving their functionality.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
FuncPEP v2.0:从非编码 RNA 翻译而来的功能性短肽的最新数据库。
在过去的十年中,有报告称从所谓的非编码 RNA(ncRNA)中翻译出了新型短功能肽(长度小于 100 aa),这些肽已通过质谱(MS)和大规模蛋白质组学研究进行了表征。因此,了解某些 ncRNAs 的二重功能,即同时编码功能 RNAs 和短肽的转录本(我们将其命名为 ncPEPs),将加深我们对生物学和疾病的理解。2020 年,我们发布了首个从非编码 RNA 翻译而来的功能肽数据库--FuncPEP。在此,我们对过去三年新发表的 ncPEPs 以及宿主 ncRNAs 的分类进行了更新。FuncPEP v2.0 包含 152 个功能性 ncPEPs,其中 40 个为新条目。在 2020 年 8 月至 2023 年 7 月期间,我们在 PubMed 上搜索了特定的关键词,并筛选了报道从 ncRNAs 派生的有效功能肽的出版物。我们没有观察到新发现的功能性 ncPEPs 有明显增加,而是稳步增长。数据库中新发现的 ncPEPs 具有一系列分子和生理参数(即宿主 ncRNA 的类型、物种分布、染色体密度、ncRNA 长度分布、鉴定方法、分子量以及在人类和其他物种中的功能分布)。我们认为,尽管现在 MS 可以轻松识别 ncPEPs,但在证明其功能性方面仍有很大的局限性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Non-Coding RNA
Non-Coding RNA Biochemistry, Genetics and Molecular Biology-Genetics
CiteScore
6.70
自引率
4.70%
发文量
74
审稿时长
10 weeks
期刊介绍: Functional studies dealing with identification, structure-function relationships or biological activity of: small regulatory RNAs (miRNAs, siRNAs and piRNAs) associated with the RNA interference pathway small nuclear RNAs, small nucleolar and tRNAs derived small RNAs other types of small RNAs, such as those associated with splice junctions and transcription start sites long non-coding RNAs, including antisense RNAs, long ''intergenic'' RNAs, intronic RNAs and ''enhancer'' RNAs other classes of RNAs such as vault RNAs, scaRNAs, circular RNAs, 7SL RNAs, telomeric and centromeric RNAs regulatory functions of mRNAs and UTR-derived RNAs catalytic and allosteric (riboswitch) RNAs viral, transposon and repeat-derived RNAs bacterial regulatory RNAs, including CRISPR RNAS Analysis of RNA processing, RNA binding proteins, RNA signaling and RNA interaction pathways: DICER AGO, PIWI and PIWI-like proteins other classes of RNA binding and RNA transport proteins RNA interactions with chromatin-modifying complexes RNA interactions with DNA and other RNAs the role of RNA in the formation and function of specialized subnuclear organelles and other aspects of cell biology intercellular and intergenerational RNA signaling RNA processing structure-function relationships in RNA complexes RNA analyses, informatics, tools and technologies: transcriptomic analyses and technologies development of tools and technologies for RNA biology and therapeutics Translational studies involving long and short non-coding RNAs: identification of biomarkers development of new therapies involving microRNAs and other ncRNAs clinical studies involving microRNAs and other ncRNAs.
期刊最新文献
Cardiomyopathies: The Role of Non-Coding RNAs. MicroRNA Biogenesis, Gene Regulation Mechanisms, and Availability in Foods. Interplay of microRNAs and circRNAs in Epithelial Ovarian Cancer. Non-Coding RNA as a Biomarker in Lung Cancer. Back to the Origin: Mechanisms of circRNA-Directed Regulation of Host Genes in Human Disease.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1