Machine learning methods to improve spatial predictions of coastal wind speed profiles and low-level jets using single-level ERA5 data

IF 3.6 Q3 GREEN & SUSTAINABLE SCIENCE & TECHNOLOGY Wind Energy Science Pub Date : 2024-04-08 DOI:10.5194/wes-9-821-2024
C. Hallgren, J. Aird, S. Ivanell, H. Körnich, V. Vakkari, R. Barthelmie, S. Pryor, E. Sahlée
{"title":"Machine learning methods to improve spatial predictions of coastal wind speed profiles and low-level jets using single-level ERA5 data","authors":"C. Hallgren, J. Aird, S. Ivanell, H. Körnich, V. Vakkari, R. Barthelmie, S. Pryor, E. Sahlée","doi":"10.5194/wes-9-821-2024","DOIUrl":null,"url":null,"abstract":"Abstract. Observations of the wind speed at heights relevant for wind power are sparse, especially offshore, but with emerging aid from advanced statistical methods, it may be possible to derive information regarding wind profiles using surface observations. In this study, two machine learning (ML) methods are developed for predictions of (1) coastal wind speed profiles and (2) low-level jets (LLJs) at three locations of high relevance to offshore wind energy deployment: the US Northeastern Atlantic Coastal Zone, the North Sea, and the Baltic Sea. The ML models are trained on multiple years of lidar profiles and utilize single-level ERA5 variables as input. The models output spatial predictions of coastal wind speed profiles and LLJ occurrence. A suite of nine ERA5 variables are considered for use in the study due to their physics-based relevance in coastal wind speed profile genesis and the possibility to observe these variables in real-time via measurements. The wind speed at 10 ma.s.l. and the surface sensible heat flux are shown to have the highest importance for both wind speed profile and LLJ predictions. Wind speed profile predictions output by the ML models exhibit similar root mean squared error (RMSE) with respect to observations as is found for ERA5 output. At typical hub heights, the ML models show lower RMSE than ERA5 indicating approximately 5 % RMSE reduction. LLJ identification scores are evaluated using the symmetric extremal dependence index (SEDI). LLJ predictions from the ML models outperform predictions from ERA5, demonstrating markedly higher SEDIs. However, optimization utilizing the SEDI results in a higher number of false alarms when compared to ERA5.\n","PeriodicalId":46540,"journal":{"name":"Wind Energy Science","volume":null,"pages":null},"PeriodicalIF":3.6000,"publicationDate":"2024-04-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Wind Energy Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5194/wes-9-821-2024","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"GREEN & SUSTAINABLE SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 1

Abstract

Abstract. Observations of the wind speed at heights relevant for wind power are sparse, especially offshore, but with emerging aid from advanced statistical methods, it may be possible to derive information regarding wind profiles using surface observations. In this study, two machine learning (ML) methods are developed for predictions of (1) coastal wind speed profiles and (2) low-level jets (LLJs) at three locations of high relevance to offshore wind energy deployment: the US Northeastern Atlantic Coastal Zone, the North Sea, and the Baltic Sea. The ML models are trained on multiple years of lidar profiles and utilize single-level ERA5 variables as input. The models output spatial predictions of coastal wind speed profiles and LLJ occurrence. A suite of nine ERA5 variables are considered for use in the study due to their physics-based relevance in coastal wind speed profile genesis and the possibility to observe these variables in real-time via measurements. The wind speed at 10 ma.s.l. and the surface sensible heat flux are shown to have the highest importance for both wind speed profile and LLJ predictions. Wind speed profile predictions output by the ML models exhibit similar root mean squared error (RMSE) with respect to observations as is found for ERA5 output. At typical hub heights, the ML models show lower RMSE than ERA5 indicating approximately 5 % RMSE reduction. LLJ identification scores are evaluated using the symmetric extremal dependence index (SEDI). LLJ predictions from the ML models outperform predictions from ERA5, demonstrating markedly higher SEDIs. However, optimization utilizing the SEDI results in a higher number of false alarms when compared to ERA5.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用单级ERA5数据改进沿海风速剖面和低空喷流空间预测的机器学习方法
摘要对风力发电相关高度的风速观测非常稀少,尤其是在近海,但在先进统计方法的帮助下,有可能通过地表观测获得风廓线信息。本研究开发了两种机器学习 (ML) 方法,用于预测 (1) 沿海风速剖面和 (2) 与海上风能部署高度相关的三个地点的低空喷流 (LLJ):美国东北大西洋沿岸地区、北海和波罗的海。ML 模型根据多年激光雷达剖面图进行训练,并使用单级 ERA5 变量作为输入。这些模式输出沿岸风速剖面和 LLJ 出现的空间预测结果。由于九个ERA5 变量在沿岸风速剖面成因中的物理意义,以及通过测量实时观测这些变 量的可能性,研究中考虑使用这九个ERA5 变量。在风速廓线和 LLJ 预报中,10ma.s.l.风速和地表显热通量的重要性最大。ML 模式输出的风速剖面预测结果与观测结果的均方根误差(RMSE)相近,与 ERA5 输出的结果相似。在典型的枢纽高度,ML 模型的均方根误差比 ERA5 低,约减少了 5%。使用对称极值依赖指数(SEDI)评估了 LLJ 识别得分。ML 模型的 LLJ 预测结果优于 ERA5 预测结果,SEDI 明显更高。不过,与ERA5相比,利用SEDI进行优化会导致更多的误报。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Wind Energy Science
Wind Energy Science GREEN & SUSTAINABLE SCIENCE & TECHNOLOGY-
CiteScore
6.90
自引率
27.50%
发文量
115
审稿时长
28 weeks
期刊最新文献
Swinging motion of a kite with suspended control unit flying turning manoeuvres A sensitivity-based estimation method for investigating control co-design relevance An actuator sector model for wind power applications: a parametric study Experimental validation of a short-term damping estimation method for wind turbines in nonstationary operating conditions Quantifying the impact of modeling fidelity on different substructure concepts – Part 2: Code-to-code comparison in realistic environmental conditions
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1