TDP2 is a regulator of estrogen-responsive oncogene expression

IF 3.4 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY NAR cancer Pub Date : 2024-04-08 DOI:10.1093/narcan/zcae016
N. Manguso, Minhyung Kim, Neeraj Joshi, Md Rasel Al Mahmud, Juan Aldaco, Ryusuke Suzuki, Felipe Cortés-Ledesma, Xiaojiang Cui, Shintaro Yamada, Shunichi Takeda, Armando Giuliano, Sungyong You, Hisashi Tanaka
{"title":"TDP2 is a regulator of estrogen-responsive oncogene expression","authors":"N. Manguso, Minhyung Kim, Neeraj Joshi, Md Rasel Al Mahmud, Juan Aldaco, Ryusuke Suzuki, Felipe Cortés-Ledesma, Xiaojiang Cui, Shintaro Yamada, Shunichi Takeda, Armando Giuliano, Sungyong You, Hisashi Tanaka","doi":"10.1093/narcan/zcae016","DOIUrl":null,"url":null,"abstract":"Abstract With its ligand estrogen, the estrogen receptor (ER) initiates a global transcriptional program, promoting cell growth. This process involves topoisomerase 2 (TOP2), a key protein in resolving topological issues during transcription by cleaving a DNA duplex, passing another duplex through the break, and repairing the break. Recent studies revealed the involvement of various DNA repair proteins in the repair of TOP2-induced breaks, suggesting potential alternative repair pathways in cases where TOP2 is halted after cleavage. However, the contribution of these proteins in ER-induced transcriptional regulation remains unclear. We investigated the role of tyrosyl-DNA phosphodiesterase 2 (TDP2), an enzyme for the removal of halted TOP2 from the DNA ends, in the estrogen-induced transcriptome using both targeted and global transcription analyses. MYC activation by estrogen, a TOP2-dependent and transient event, became prolonged in the absence of TDP2 in both TDP2-deficient cells and mice. Bulk and single-cell RNA-seq analyses defined MYC and CCND1 as oncogenes whose estrogen response is tightly regulated by TDP2. These results suggest that TDP2 may inherently participate in the repair of estrogen-induced breaks at specific genomic loci, exerting precise control over oncogenic gene expression.","PeriodicalId":94149,"journal":{"name":"NAR cancer","volume":null,"pages":null},"PeriodicalIF":3.4000,"publicationDate":"2024-04-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"NAR cancer","FirstCategoryId":"0","ListUrlMain":"https://doi.org/10.1093/narcan/zcae016","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Abstract With its ligand estrogen, the estrogen receptor (ER) initiates a global transcriptional program, promoting cell growth. This process involves topoisomerase 2 (TOP2), a key protein in resolving topological issues during transcription by cleaving a DNA duplex, passing another duplex through the break, and repairing the break. Recent studies revealed the involvement of various DNA repair proteins in the repair of TOP2-induced breaks, suggesting potential alternative repair pathways in cases where TOP2 is halted after cleavage. However, the contribution of these proteins in ER-induced transcriptional regulation remains unclear. We investigated the role of tyrosyl-DNA phosphodiesterase 2 (TDP2), an enzyme for the removal of halted TOP2 from the DNA ends, in the estrogen-induced transcriptome using both targeted and global transcription analyses. MYC activation by estrogen, a TOP2-dependent and transient event, became prolonged in the absence of TDP2 in both TDP2-deficient cells and mice. Bulk and single-cell RNA-seq analyses defined MYC and CCND1 as oncogenes whose estrogen response is tightly regulated by TDP2. These results suggest that TDP2 may inherently participate in the repair of estrogen-induced breaks at specific genomic loci, exerting precise control over oncogenic gene expression.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
TDP2 是雌激素反应性癌基因表达的调节器
摘要 雌激素受体(ER)通过其配体雌激素启动全局转录程序,促进细胞生长。这一过程涉及拓扑异构酶 2(TOP2),它是解决转录过程中拓扑问题的一个关键蛋白,其作用是裂解 DNA 双链,使另一个双链通过断裂处并修复断裂。最近的研究发现,多种 DNA 修复蛋白参与了 TOP2 诱导的断裂修复,这表明在 TOP2 在裂解后停止的情况下,可能存在其他修复途径。然而,这些蛋白在ER诱导的转录调控中的贡献仍不清楚。我们利用靶向和全局转录分析研究了酪氨酰-DNA 磷酸二酯酶 2(TDP2)在雌激素诱导的转录组中的作用。在缺乏 TDP2 的细胞和小鼠中,雌激素对 MYC 的活化(一种依赖于 TOP2 的瞬时事件)在缺乏 TDP2 的情况下会延长。大量和单细胞RNA-seq分析确定了MYC和CCND1是其雌激素反应受TDP2严格调控的癌基因。这些结果表明,TDP2 可能本质上参与了雌激素诱导的特定基因组位点断裂的修复,从而对致癌基因的表达进行精确控制。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
6.90
自引率
0.00%
发文量
0
审稿时长
13 weeks
期刊介绍:
期刊最新文献
Correction to 'Ku-DNA binding inhibitors modulate the DNA damage response in response to DNA double-strand breaks'. CytoCellDB: a comprehensive resource for exploring extrachromosomal DNA in cancer cell lines. DNA abasic sites act as rational therapeutic targets to synergize temozolomide response in both MMR-proficient and deficient cancer. High-level tumour methylation of BRCA1 and RAD51C is required for homologous recombination deficiency in solid cancers. Decoding ribosome complexity: role of ribosomal proteins in cancer and disease.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1