Hybrid Optimization Model Integrating Gradient Descent and Stochastic Descent for Enhanced Osteoporosis and Osteopenia Recognition

Ramesh T, Santhi V
{"title":"Hybrid Optimization Model Integrating Gradient Descent and Stochastic Descent for Enhanced Osteoporosis and Osteopenia Recognition","authors":"Ramesh T, Santhi V","doi":"10.53759/7669/jmc202404032","DOIUrl":null,"url":null,"abstract":"Osteoporosis and osteopenia, prevalent bone diseases affecting millions of people globally, necessitate accurate early diagnosis for effective treatment and fracture prevention. This paper proposes a novel hybrid optimization algorithm tailored for classifying these conditions based on Bone Mineral Density (BMD) measurements. The algorithm, a customized Mini-Batch Gradient Descent (MBGD), blends the advantages of Gradient Descent (GD) and Stochastic Gradient Descent (SGD), addressing specific needs for osteoporosis and osteopenia classification. Utilizing a dataset comprising BMD measurements and clinical risk factors from the Osteoporotic Fractures in Men (MrOS), Study of Osteoporotic Fractures (SOF), and Fracture Risk Assessment (FRAX), the model achieves an impressive accuracy of 99.01%. The proposed model outperforms existing methods, demonstrating superior accuracy compared to the accuracy obtained in Gradient Descent of 97.26%, Stochastic Gradient Descent of 97.23%, and other optimization algorithms such as Adam of 96.45% and the RMSprop of 96.23%. This hybrid model presents a robust framework for early diagnosis of Osteoporosis and osteopenia, and hence there is an enhancement in quality of life.","PeriodicalId":516221,"journal":{"name":"Journal of Machine and Computing","volume":"87 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-04-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Machine and Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.53759/7669/jmc202404032","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Osteoporosis and osteopenia, prevalent bone diseases affecting millions of people globally, necessitate accurate early diagnosis for effective treatment and fracture prevention. This paper proposes a novel hybrid optimization algorithm tailored for classifying these conditions based on Bone Mineral Density (BMD) measurements. The algorithm, a customized Mini-Batch Gradient Descent (MBGD), blends the advantages of Gradient Descent (GD) and Stochastic Gradient Descent (SGD), addressing specific needs for osteoporosis and osteopenia classification. Utilizing a dataset comprising BMD measurements and clinical risk factors from the Osteoporotic Fractures in Men (MrOS), Study of Osteoporotic Fractures (SOF), and Fracture Risk Assessment (FRAX), the model achieves an impressive accuracy of 99.01%. The proposed model outperforms existing methods, demonstrating superior accuracy compared to the accuracy obtained in Gradient Descent of 97.26%, Stochastic Gradient Descent of 97.23%, and other optimization algorithms such as Adam of 96.45% and the RMSprop of 96.23%. This hybrid model presents a robust framework for early diagnosis of Osteoporosis and osteopenia, and hence there is an enhancement in quality of life.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
梯度下降与随机下降相结合的混合优化模型,用于增强骨质疏松症和骨质疏松的识别能力
骨质疏松症和骨质增生是影响全球数百万人的流行性骨病,需要准确的早期诊断才能有效治疗和预防骨折。本文提出了一种新型混合优化算法,专门用于根据骨矿密度(BMD)测量结果对这些疾病进行分类。该算法是一种定制的小批量梯度下降算法(MBGD),融合了梯度下降算法(GD)和随机梯度下降算法(SGD)的优点,满足了骨质疏松症和骨质疏松症分类的特定需求。该模型利用了一个数据集,其中包括来自男性骨质疏松性骨折(MrOS)、骨质疏松性骨折研究(SOF)和骨折风险评估(FRAX)的 BMD 测量值和临床风险因素,准确率达到了令人印象深刻的 99.01%。与梯度下降法(97.26%)、随机梯度下降法(97.23%)以及其他优化算法(如亚当算法(96.45%)和 RMSprop 算法(96.23%))相比,所提出的模型的准确性优于现有方法。该混合模型为早期诊断骨质疏松症和骨质增生提供了一个稳健的框架,从而提高了生活质量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Optimizing Building Energy Management with Deep Reinforcement Learning for Smart and Sustainable Infrastructure Enhancing Predictive Maintenance in Water Treatment Plants through Sparse Autoencoder Based Anomaly Detection Advancements and Challenges in Underwater Soft Robotics: Materials, Control and Integration IoT Based ICU Healthcare: Optimizing Patient Monitoring and Treatment with Advanced Algorithms Hybrid Optimization Model Integrating Gradient Descent and Stochastic Descent for Enhanced Osteoporosis and Osteopenia Recognition
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1